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Lecture 10: Introduction to Genomics
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Announcements
● Upcoming deadlines:

○ A2 due Tue Nov 1
○ A3 also released Tue, due Tue Nov 15
○ Midterm: In class, Mon Nov 7

■ 80 minutes
■ 1 page 8.5’’ x 11’’ of notes allowed (back and front)
■ No calculators allowed or needed
■ Covers material through “Genomics: Introduction”
■ Practice midterm released on Ed
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Some biology basics: 
starting from DNA

Figure credit: virtualmedicalcentre.com
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Some biology basics: 
starting from DNA

Figure credit: virtualmedicalcentre.com

~ 37 trillion cells in 
the human body
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Some biology basics: 
starting from DNA

Figure credit: virtualmedicalcentre.com

Nucleus: “brain of 
the cell”. Contains 
genetic material in 
the form of DNA.
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Some biology basics: 
starting from DNA

Figure credit: virtualmedicalcentre.com



8Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

Some biology basics: 
starting from DNA

Figure credit: virtualmedicalcentre.com
Figure credit: 
https://en.wikipedia.org/wiki/Nucleobase#/media/File:DNA_chemical_structure.svg

https://en.wikipedia.org/wiki/Nucleobase#/media/File:DNA_chemical_structure.svg
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Chromosomes and genes

Figure credit: https://ghr.nlm.nih.gov/primer/illustrations/chromosomes.jpg Figure credit: https://www.ncbi.nlm.nih.gov/books/NBK22266/bin/a01chr.jpg
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Chromosomes and genes

Figure credit: https://ghr.nlm.nih.gov/primer/illustrations/chromosomes.jpg Figure credit: https://www.ncbi.nlm.nih.gov/books/NBK22266/bin/a01chr.jpg

23 pairs of chromosomes (22 
autosomes + sex chromosomes)
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Chromosomes and genes

Figure credit: https://ghr.nlm.nih.gov/primer/illustrations/chromosomes.jpg Figure credit: https://www.ncbi.nlm.nih.gov/books/NBK22266/bin/a01chr.jpg

Genes: segments of DNA within 
chromosomes



12Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

Chromosomes and genes

Figure credit: https://ghr.nlm.nih.gov/primer/illustrations/chromosomes.jpg Figure credit: https://www.ncbi.nlm.nih.gov/books/NBK22266/bin/a01chr.jpg

Genes: segments of DNA within 
chromosomes

Genes provide code for proteins
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Chromosomes and genes

Figure credit: https://ghr.nlm.nih.gov/primer/illustrations/chromosomes.jpg Figure credit: https://www.ncbi.nlm.nih.gov/books/NBK22266/bin/a01chr.jpg

Genes: segments of DNA within 
chromosomes

Genes provide code for proteins
But 99% of genes are “non-coding!”
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DNA replication and transcription

Figure credit: 
https://www.bosterbio.com/media/images/MB_Replication_and_Transcription.png
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DNA replication and transcription

Figure credit: 
https://www.bosterbio.com/media/images/MB_Replication_and_Transcription.png

Figure credit: 
https://en.wikipedia.org/wiki/Mitosis#/media/File:Major_events_in_mitosis.svg
https://en.wikipedia.org/wiki/Meiosis#/media/File:Meiosis_Overview_new.svg

Mitosis Meiosis

https://en.wikipedia.org/wiki/Mitosis#/media/File:Major_events_in_mitosis.svg
https://en.wikipedia.org/wiki/Meiosis#/media/File:Meiosis_Overview_new.svg
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DNA replication and transcription

Figure credit: 
https://www.bosterbio.com/media/images/MB_Replication_and_Transcription.png
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Transcription and 
translation

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg
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Transcription and 
translation

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg

Transcription: DNA -> RNA
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Transcription and 
translation

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg

Transcription: DNA -> RNA

Translation: RNA -> Protein
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DNA -> Pre-mRNA

Figure credit: 
http://u18439936.onlinehome-server.com/craig.milgrim/Bio230/Outline/ECBFigures_Tables/Chapter_7/FigureJPGs/figure_07_09.jpg
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DNA -> Pre-mRNA

Figure credit: 
http://u18439936.onlinehome-server.com/craig.milgrim/Bio230/Outline/ECBFigures_Tables/Chapter_7/FigureJPGs/figure_07_09.jpg

Gene to 
transcribe
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DNA -> Pre-mRNA

Figure credit: 
http://u18439936.onlinehome-server.com/craig.milgrim/Bio230/Outline/ECBFigures_Tables/Chapter_7/FigureJPGs/figure_07_09.jpg

RNA polymerase: enyzme that binds to 
promoter region and uses DNA 
template to synthesize complementary 
RNA
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DNA -> Pre-mRNA

Figure credit: 
https://cdn.technologynetworks.com/tn/images/thumbs/webp/640_360/what-are-the-key-differences-between-dna-and-rna-296719.webp?v=9503516
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Pre-mRNA -> mRNA

Figure credit: http://academic.pgcc.edu/~kroberts/Lecture/Chapter%207/transcription.html

http://academic.pgcc.edu/~kroberts/Lecture/Chapter%207/transcription.html
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Pre-mRNA -> mRNA

Figure credit: http://academic.pgcc.edu/~kroberts/Lecture/Chapter%207/transcription.html

mRNA splicing: remove introns 
(non-coding regions), splice 
together exons (coding regions)

http://academic.pgcc.edu/~kroberts/Lecture/Chapter%207/transcription.html
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mRNA -> Proteins

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg



27Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

mRNA -> Proteins

Ribosome: cell organelle that 
synthesizes proteins

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg
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mRNA -> Proteins

tRNA: molecule carrying amino 
acids corresponding to each 
3-nucleotide codon

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg
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mRNA -> Proteins

Protein being 
synthesized

Figure credit: https://www.cancer.gov/images/cdr/live/CDR761782-571.jpg



30Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

mRNA -> Proteins

Figure credit: 
https://en.wikipedia.org/wiki/Transl
ation_(biology)#/media/File:Riboso
me_mRNA_translation_en.svg
https://philschatz.com/biology-con
cepts-book/resources/Figure_09_
04_02.jpg

https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
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mRNA -> Proteins

Figure credit: 
https://en.wikipedia.org/wiki/Transl
ation_(biology)#/media/File:Riboso
me_mRNA_translation_en.svg
https://philschatz.com/biology-con
cepts-book/resources/Figure_09_
04_02.jpg

Codon -> amino acid mapping

https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
https://en.wikipedia.org/wiki/Translation_(biology)#/media/File:Ribosome_mRNA_translation_en.svg
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Epigenomics
Study of processes that regulate how and when genes are 
turned on and off (“gene expression”)
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- E.g. transcription factors: proteins that bind to the 
promoter and other noncoding regions, can enhance 
or repress transcription
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Epigenomics
Study of processes that regulate how and when genes are 
turned on and off (“gene expression”)

- E.g. transcription factors: proteins that bind to the 
promoter and other noncoding regions, can enhance 
or repress transcription

- E.g. DNA methylation: addition of large methyl group 
to promoter region makes it difficult for proteins to bind 
-> represses transcription
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Epigenomics
Study of processes that regulate how and when genes are 
turned on and off (“gene expression”)

- E.g. transcription factors: proteins that bind to the 
promoter and other noncoding regions, can enhance 
or repress transcription

- E.g. DNA methylation: addition of large methyl group 
to promoter region makes it difficult for proteins to bind 
-> represses transcription

- E.g. Histone modification: addition or removal of 
acetyl groups affects charge interaction to relax or 
tighten chromatin structure (easier for proteins to bind)

Figure credit: 
https://philschatz.com/biology-concepts-book/resources/Figure_09_01_06.jpg
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Transcriptomics
- Study of the transcriptome (the RNA of a cell)
- One reason of interest: Harder to measure proteins (the functional 

molecules!), but we can sequence RNA as a (highly imperfect) proxy for 
proteins to quantify cell state
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Transcriptomics
- Study of the transcriptome (the RNA of a cell)
- One reason of interest: Harder to measure proteins (the functional 

molecules!), but we can sequence RNA as a (highly imperfect) proxy for 
proteins to quantify cell state

Proteomics
- Study of the proteins in a cell
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Data: genomic sequencing

Produces readout of DNA template strands

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Add some special (and 
fluorescently labeled) nucleotides 
that cause a chain being 
synthesized to terminate
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Random interaction of nucleotides 
with template strand lead to chains 
of different early-terminated lengths
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Sorting by length (e.g. 
electrophoresis)  gives sequence 
readout
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Arrange many short templates on 
an array
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Now all added nucleotides are 
chain-terminating
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

All templates get next sequence 
element attached (and terminated), 
then read
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Apply process to “restore” the 
chain-terminating nucleotides to be normal, 
then repeat to extend synthesizing sequence 
by one more nucleotide
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Data: genomic sequencing

Produces readout of DNA template strands

Sanger sequencing: Invented in 1977, based 
on “chain termination”

Next-generation sequencing (NGS): Used 
since 2000s, based on massively parallelized 
sequencing of short sequences

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig1_HTML.jpg

Set of read-out images at every step gives 
sequences of all template strands. Then analyze 
data to reconstruct longer sequences.
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Data: DNA microarray

Produces relative expression of 
genes in normal vs disease 
tissue samples

Figure credit: http://www.vce.bioninja.com.au/_Media/microarray_med.jpeg
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Data: DNA microarray

Produces relative expression of 
genes in normal vs disease 
tissue samples

Figure credit: http://www.vce.bioninja.com.au/_Media/microarray_med.jpeg

Isolate mRNA (“expressed genes”) from 
tissue samples and synthesize 
complementary DNA (cDNA).
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Data: DNA microarray

Produces relative expression of 
genes in normal vs disease 
tissue samples

Figure credit: http://www.vce.bioninja.com.au/_Media/microarray_med.jpeg

Isolate mRNA (“expressed genes”) from 
tissue samples and synthesize 
complementary DNA (cDNA).

Use fluorescent tags to label 
cDNA from normal tissue green, 
and from disease tissue red 
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Data: DNA microarray

Produces relative expression of 
genes in normal vs disease 
tissue samples

Figure credit: http://www.vce.bioninja.com.au/_Media/microarray_med.jpeg

Each spot of DNA microarray 
contains single-stranded DNA 
corresponding to a gene
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Data: DNA microarray

Produces relative expression of 
genes in normal vs disease 
tissue samples

Figure credit: http://www.vce.bioninja.com.au/_Media/microarray_med.jpeg

cDNA will bind to the 
corresponding DNA strands on 
microarray. Color indicates ratio of 
cDNA (relative gene expression) 
in the normal vs disease tissue
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png

Isolate RNA and generate 
cDNA
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png

Use NGS to sequence 
cDNA
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png

Map back to reference 
genome for analysis
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png

Map back to reference 
genome for analysis

Now standard approach 
for transcriptomics study
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Data: RNA-seq

Produces readout of 
mRNA content in a 
tissue sample

Figure credit: https://cdn.technologynetworks.com/tn/images/body/dnasequencinga1529596208892.png

Map back to reference 
genome for analysis

Now standard approach 
for transcriptomics study

More recently in 2010s, 
single-cell RNA-seq!
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Data: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Use formaledehyde 
treatment to cross-link (fix) 
proteins to their bound DNA
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Data: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Disintegrate non-bound 
DNA -> what is left is DNA 
segments bound to protein
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Data: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Treat sample to remove 
proteins
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Data: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Use NGS to read-out 
remaining DNA sequences
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Data: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Figure credit: 
https://www.researchgate.net/publication/262150050/figure/fig2/AS:272
566950559751@1441996433141/Chromatin-domain-containing-VDR-b
inding-sites-The-IGV-browser-was-used-to-display-the.png

Visualize distribution of 
locations on DNA where 
protein binds
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ENCODE: identifying and analyzing all functional elements in 
the human genome

Figure credit: https://www.encodeproject.org/

- Launched by US 
National Human 
Genome Research 
Institute in 2003

- Contributions from 
worldwide consortium of 
research groups

https://www.encodeproject.org/
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ENCODE data
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ENCODE data
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ENCODE data
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Other datasets
https://www.ga4gh.org/community/catalogue

https://www.ga4gh.org/community/catalogue


70Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

Other datasets
https://www.ga4gh.org/community/catalogue

https://www.ga4gh.org/community/catalogue


71Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

Genomics data

1953 - Watson and Crick 
discover double helix 

structures of DNA

2008 - 2015: 1000 Genomes Project
International effort to study human 

genetic variation

1977 - Fred Sanger 
sequences first full genome 

of a virus

1990 - 2003: Human Genome 
Project sequences full human 

genome

2003: ENCODE project launched to 
identify and characterize genes in 

human genome

2006 - present: UK Biobank Project
Genetic data and intended 30 years of health 

follow-up for 500k individuals in the UK
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Input: DNA sequence
Output: Score of whether a particular 
protein will bind to the sequence or not
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Input: DNA sequence
Output: Score of whether a particular 
protein will bind to the sequence or not

Convolutional network
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Input: DNA sequence
Output: Score of whether a particular 
protein will bind to the sequence or not

- Processing to handle different 
sources of experimental (training) 
data and input / output data formats

- Trained on 12 TB of sequence 
data; learned 927 DeepBind 
models representing 538 
transcription factor (TF) proteins 
and 194 RNA-binding proteins 
(RBPs)
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Input: DNA sequence
Output: Score of whether a particular 
protein will bind to the sequence or not

- Processing to handle different 
sources of experimental (training) 
data and input / output data formats

- Trained on 12 TB of sequence 
data; learned 927 DeepBind 
models representing 538 
transcription factor (TF) proteins 
and 194 RNA-binding proteins 
(RBPs)

Outperformed prior methods on the DREAM5 
TF-DNA Motif Recognition Challenge
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Learned DeepBind motifs
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DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Predicted effect of sequence mutations
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DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism) 
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DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism)

Input: DNA sequence pair with SNP
Output: Predicted chromatin effects (919 total)

- 690 transcription factor profiles
- 125 DNase I hypersensitive sites (DHS) 

profiles (looser chromatin structure, easier 
protein binding)

- 104 histone-mark profiles (histone 
modifications)

Multi-task training!
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DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism)

Input: DNA sequence pair with SNP
Output: Predicted chromatin effects (919 total)

- 690 transcription factor profiles
- 125 DNase I hypersensitive sites (DHS) 

profiles (looser chromatin structure, easier 
protein binding)

- 104 histone-mark profiles (histone 
modifications)

Multi-task training!



81Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism)

Input: DNA sequence pair with SNP
Output: Predicted chromatin effects (919 total)

- 690 transcription factor profiles
- 125 DNase I hypersensitive sites (DHS) 

profiles (looser chromatin structure, easier 
protein binding)

- 104 histone-mark profiles (histone 
modifications)

Multi-task training!



82Serena Yeung BIODS 220: AI in Healthcare Lecture 10 -

DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism)

Input: DNA sequence pair with SNP
Output: Predicted chromatin effects (919 total)

- 690 transcription factor profiles
- 125 DNase I hypersensitive sites (DHS) 

profiles (looser chromatin structure, easier 
protein binding)

- 104 histone-mark profiles (histone 
modifications)

Multi-task training!

Multi-task prediction of 
919 chromatin profiles, 
for each allele (variant)
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DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.

Predict chromatin effects of (non-coding) sequence 
alterations with single-nucleotide sensitivity (SNPs: 
single nucleotide polymorphism)

Input: DNA sequence pair with SNP
Output: Predicted chromatin effects (919 total)

- 690 transcription factor profiles
- 125 DNase I hypersensitive sites (DHS) 

profiles (looser chromatin structure, easier 
protein binding)

- 104 histone-mark profiles (histone 
modifications)

Multi-task training!

Interested in relative 
effect
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DeepSea

Zhou and Troyanskaya. Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 2015.
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Variant calling: identifying variants from reference 
genome (SNPs, small indels, etc.)

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig2_HTML.jpg
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Variant calling: identifying variants from reference 
genome (SNPs, small indels, etc.)

Challenge with short, errorful 
sequence reads from NGS!

Figure credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633438/bin/40142_2015_76_Fig2_HTML.jpg
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Input: “Pileup images” of 
reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.
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reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Input: “Pileup images” of 
reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Input: “Pileup images” of 
reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant

Used an Inception v3 CNN
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Input: “Pileup images” of 
reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant

Used an Inception v3 CNN
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DeepVariant

Poplin et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018.

Input: “Pileup images” of 
reference sequence + NGS 
reads, + other features

Output: Categorical prediction of 
variant type (hom-ref, het, 
hom-alt), or no variant

Used an Inception v3 CNN

Won highest performance for 
SNPs in the 2016 FDA variant 
calling Truth Challenge
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Remember: ChIP-seq

Produces reads of 
DNA sequences 
where a protein 
binds

Figure credit: 
https://www.france-genomique.org/wp-content/uploads/2019/08/CHIP-selon-P
ark-1-e1566900408602.jpg

Figure credit: 
https://www.researchgate.net/publication/262150050/figure/fig2/AS:272
566950559751@1441996433141/Chromatin-domain-containing-VDR-b
inding-sites-The-IGV-browser-was-used-to-display-the.png

Visualize distribution of 
locations on DNA where 
protein binds
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Remember: DeepBind

Alipanahi et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015.

Input: DNA sequence
Output: Score of whether a particular 
protein will bind to the sequence or not

- Processing to handle different 
sources of experimental (training) 
data and input / output data formats

- Trained on 12 TB of sequence 
data; learned 927 DeepBind 
models representing 538 
transcription factor (TF) proteins 
and 194 RNA-binding proteins 
(RBPs)
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More recently: ChIP-nexus vs. ChIP-seq

ChIP-nexus: newer technology that 
enables improved and 
higher-resolution data about 
transcription factor binding footprints 
on DNA (at individual base-pair 
resolution)

He et al. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nature Biotechnology, 2015.
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More recently: ChIP-nexus vs. ChIP-seq

ChIP-nexus: newer technology that 
enables improved and 
higher-resolution data about 
transcription factor binding footprints 
on DNA (at individual base-pair 
resolution)

He et al. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nature Biotechnology, 2015.

ChiP-seq
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More recently: ChIP-nexus vs. ChIP-seq

ChIP-nexus: newer technology that 
enables improved and 
higher-resolution data about 
transcription factor (TF) binding 
footprints on DNA (at individual 
base-pair resolution)

He et al. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nature Biotechnology, 2015.

ChiP-nexus
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BPNet: DNA sequence to base-pair resolution profile regression

- Deep learning-based model 
based on ChiP-nexus data, 
that predicts TF binding profile 
at high, individual base-pair 
resolution

Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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BPNet: DNA sequence to base-pair resolution profile regression

- Deep learning-based model 
based on ChiP-nexus data, 
that predicts TF binding profile 
at high, individual base-pair 
resolution

- Uses 1-D, dilated 
convolutional layers for greater 
increase of receptive field 
(extent of input used to 
produce a neuron output), 
instead of pooling layers -> 
maintains base-pair resolution

Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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Dilated convolutions instead of convolutions
- Greater increase of receptive field vs. standard convolution, for the same # of layers (avoids 

requiring many layers to increase receptive field which is more difficult to train)
- Pooling layers can also increase receptive field, but reduce resolution (whereas dilated 

convolutions can maintain high resolution)
- BPNet also includes residual connections (remember ResNets!) to improve ease of 

optimization for more effective training

Figure credit: Gupta et al. Dilated Convolutions for Modeling Long-Distance Genomic Dependencies, 2017. Slide Credit: Anshul KundajeAvsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019.
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BPNet: Profile regression loss
- Two-part loss function for optimizing prediction of the binding profile across 

the input sequence
- MSE loss for log (total number of counts across the entire 1kb input sequence)
- Multinomial loss for the likelihood of the observed count distribution over the sequence, 

compared to the predicted probabilities
-

Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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BPNet: Profile regression loss
- Two-part loss function for optimizing prediction of the binding profile across 

the input sequence
- MSE loss for log (total number of counts across the entire 1kb input sequence)
- Multinomial loss for the likelihood of the observed count distribution over the sequence, 

compared to the predicted probabilities
-

Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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BPNet: Profile regression loss
- Two-part loss function for optimizing prediction of the binding profile across 

the input sequence
- MSE loss for log (total number of counts across the entire 1kb input sequence)
- Multinomial loss for the likelihood of the observed count distribution over the sequence, 

compared to the predicted probabilities
-

MSE loss
Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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BPNet: Profile regression loss
- Two-part loss function for optimizing prediction of the binding profile across 

the input sequence
- MSE loss for log (total number of counts across the entire 1kb input sequence)
- Multinomial loss for the likelihood of the observed count distribution over the sequence, 

compared to the predicted probabilities
-

Multinomial loss
Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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Multinomial loss component

Multinomial loss

Avsec et al. Deep learning at base-resolution reveals motif syntax of the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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BPNet predicted TF profiles

Avsec et al. Deep learning at 
base-resolution reveals motif syntax of 
the cis-regulatory code, 2019. Slide Credit: Anshul Kundaje
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More examples of deep learning in genomics
Epigenomics:

- Predicting methylation states, gene expression from histone modifications, 
etc.

Transcriptomics:

- Predicting phenotypes from transcriptome, identifying genes associated with 
transcriptomic data, etc.

Proteomics:

- Predicting secondary structure of proteins, protein-protein interactions, etc.
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Summary
Today we covered:

- Biology basics for genomics
- Epigenomics, transcriptomics, proteomics
- Genomics data
- Examples of deep learning for genomics


