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Lecture 12: Unsupervised and 
Reinforcement Learning
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Announcements
● A1, A2, and project proposal grades are released on Gradescope
● A3 due Tue 11/15
● Project milestone due Fri 11/18
● Remember: 6 late days provided in the class, you can use up to 4 per 

assignment / project milestone
● Extra credit opportunity: +0.25% on final class grade for attending upcoming 

guest lecture live (applied post-curve, does not affect curve)
○ Mon 11/14 in-person, Dr. Barbara Engelhardt, Genomics: Advanced Topics
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Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, semantic segmentation, 
object detection, instance 
segmentation

Right 
effusion

Classification

Supervised learning
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Data: x

Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
representation / feature learning, 
density estimation, etc.

Now: Unsupervised learning
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Data: x

Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
representation / feature learning, 
density estimation, etc.

Now: Unsupervised learning

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Data: x

Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
representation / feature learning, 
density estimation, etc.

Now: Unsupervised learning

Representation learning

Encoder

Input data

Features

Unsupervised 
training objective
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Autoencoders

Unsupervised 
representation 
learning: 
autoencoders 
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Unsupervised 
representation 
learning: 
autoencoders 

Autoencoders

(Feature 
representation)



9Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -9

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Representation learning: autoencoders



10Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -10

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Representation learning: autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

Representation learning: autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data

Representation learning: autoencoders
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Encoder

Input data

Features

How to learn this feature representation?

Representation learning: autoencoders



14Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -14

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Representation learning: autoencoders
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Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Representation learning: autoencoders
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Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Representation learning: autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Representation learning: autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!
-> unsupervised

Representation learning: autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder

Representation learning: autoencoders
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Encoder

Input data

Features

Representation learning: autoencoders

Encoder network can now be 
used as a feature extractor! 
Should be semantically 
meaningful features due to 
autoencoder loss from training.
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Encoder

Input data

Features

Representation learning: autoencoders

Encoder network can now be 
used as a feature extractor! 
Should be semantically 
meaningful features due to 
autoencoder loss from training.

Features can be used for 
clustering, retrieval (e.g. find the 
closest patient to this one), etc.
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Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

In supervised 
learning tasks, an 
encoder trained in 
an unsupervised 
way (potentially on 
larger amounts of 
data) can also be 
used as a feature 
extractor for the 
task, or to initialize a 
supervised model

Representation learning: autoencoders
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Miotto 2016
- Used stack of denoising autoencoders (add noise to inputs to avoid overfitting) to learn feature 

representation from EHR data of 700,000 patients from Mount Sinai

- Used learned feature representation for downstream disease classification tasks

Miotti et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records, 2016.
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Darabi 2019
- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records 

from 250 hospital sites (eICU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.
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Darabi 2019
- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records 

from 250 hospital sites (eICU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.

Autoencoder for each 
code-based modality (e.g. 
medication, treatment, 
diagnosis), and signal 
time-series (e.g. heart rate)
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Darabi 2019
- Autoencoder-based unsupervised representation learning for multimodal data of 200,000 records 

from 250 hospital sites (eICU collaborative Research Database)

- Used feature representation to train models for downstream mortality, readmission prediction tasks

Darabi et al. Unsupervised Representation for EHR Signals and Codes as Patient Status Vector, 2019.

Concatenate feature 
representations from 
each autoencoder, 
and further fine-tune 
on predicting future 
elements in data
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Aside: self-supervised learning
- Also learns representations without external (e.g., manually provided) labels, 

but instead using labels generated from inherent structure in the data
- Remember BERT training

Huang et al. ClinicalBert: Modeling Clinical Notes and Predicting Hospital Readmission, 2019.
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Aside: self-supervised learning
- Also learns representations without external (e.g., manually provided) labels, 

but instead using labels generated from inherent structure in the data
- Remember BERT training

Huang et al. ClinicalBert: Modeling Clinical Notes and Predicting Hospital Readmission, 2019.

Also a lot of recent 
work in contrastive 
learning. E.g., two 
transformed versions 
of an image should 
have similar 
representations to 
each other, and 
different from 
transformed versions 
of other images
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!
-> unsupervised

Representation learning: autoencoders
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder



31Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -31

Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from

Sample x|z from
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from

Sample x|z from

Loss function



37Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -37

Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from

Sample x|z from

Loss function

Maximize 
likelihood of 
original input 
being 
reconstructed
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Encoder network

Decoder network

Input Data

Probabilistic version: 
variational autoencoder

Sample z from

Sample x|z from

Loss function

Maximize 
likelihood of 
original input 
being 
reconstructed

Make output distribution 
of encoder close to a 
prior
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Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since variational autoencoders learn distribution of the data, 
can also be used to generate new (synthetic) data
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Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since variational autoencoders learn distribution of the data, 
can also be used to generate new (synthetic) data



41Serena Yeung BIODS 220: AI in Healthcare Lecture 12 -41

Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since variational autoencoders learn distribution of the data, 
can also be used to generate new (synthetic) data

Data manifold for 2-d z

Vary z1

Vary z2
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Vary z1

Vary z2

Degree of smile

Head pose

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since variational autoencoders learn distribution of the data, 
can also be used to generate new (synthetic) data
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Another approach for learning to generate data: 
generative adversarial networks (GANs) 
Motivation: Want to sample (generate data) from complex, high-dimensional training 
distribution.  No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   
Q: What can we use to 
represent this complex 
transformation?
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Another approach for learning to generate data: 
generative adversarial networks (GANs) 
Motivation: Want to sample (generate data) from complex, high-dimensional training 
distribution.  No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   
Q: What can we use to 
represent this complex 
transformation?

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

A: A neural network!
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Another approach for learning to generate data: 
generative adversarial networks (GANs) 
Motivation: Want to sample (generate data) from complex, high-dimensional training 
distribution.  No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   
Q: What can we use to 
represent this complex 
transformation?

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

A: A neural network!

If goal is generating high quality 
samples, most current state-of-the-art 
approaches based on this
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game

46

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) that image is real

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game

Discriminator outputs likelihood in (0,1) that image is real
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Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    In practice: Gradient ascent on generator, different objective

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    In practice: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being 
correct, now maximize likelihood of discriminator being 
wrong. 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    In practice: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being 
correct, now maximize likelihood of discriminator being 
wrong. 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game

Same objective of fooling discriminator, but this 
objective has some nice properties that make 
optimization work better in practice
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Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    In practice: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being 
correct, now maximize likelihood of discriminator being 
wrong. 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game

Same objective of fooling discriminator, but this 
objective has some nice properties that make 
optimization work better in practice

Aside: Jointly training two 
networks is challenging, 
can be unstable.  Lots of 
active research to improve 
GAN training.
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Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Putting it together: GAN training algorithm

Some find k=1 
more stable, 
others use k > 1, 
no best rule.

More recent GAN 
variants alleviate 
this problem, 
better stability!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014Training GANs: Two-player game
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Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Two-player game
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Example: GAN-based medical image synthesis

Liver lesions of different types (Frid-Adar 2018)

Dermatology lesions (Ghorbani 2019)

Brain MRIs with lesions (Han 2018)

Can be used for data augmentation!
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Aside: diffusion models are an emerging class of generative models

Bottom figure credit: Xiao et al. 2022

Progressively corrupt training data through 
adding noise (R->L in figure), then train model 
to reverse the noising process. At the end, 
obtain a model that can go from noise to 
realistic generated images!

Ho et al. 2020
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Problems involving an agent 
interacting with an environment, 
which provides numeric reward 
signals

Goal: Learn how to take actions 
in order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

A third paradigm of learning: reinforcement learning
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Agent

Environment

Reinforcement learning
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Agent

Environment

State st

Reinforcement learning
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Agent

Environment

Action at
State st

Reinforcement learning
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Agent

Environment

Action at
State st Reward rt

Reinforcement learning
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Agent

Environment

Action at
State st Reward rt

Next state st+1

Reinforcement learning
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Q-learning (one class of RL methods)

66

Learn a function (called Q-function) to estimate the expected future reward from 
taking a particular action from any given state:

function parameters (weights)
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Q-learning (one class of RL methods)

67

Learn a function (called Q-function) to estimate the expected future reward from 
taking a particular action from any given state:

If the function is a deep neural network => deep q-learning!

function parameters (weights)
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Famous example: playing Atari games 

68

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network architecture

69

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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                    :
neural network 
with weights

Q-network architecture

70

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Output expected future reward from taking 
each of the 4 possible actions
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What is a problem with Q-learning? 
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

Policy gradients (another class of RL methods)
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Policy gradients

72

What is a problem with Q-learning? 
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of 
policies?
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Formally, let’s define a class of parameterized policies:

For each policy, define its value:

73

Policy gradients
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Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

74

Policy gradients
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Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

75

Gradient ascent on policy parameters!

Policy gradients
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Example: Raghu et al. 2017

Learned a Q-learning 
based policy to take 
treatment actions for 
sepsis patients, using 
the MIMIC dataset

5x5 possible policy 
actions at any timestep

Raghu et al. Deep Reinforcement Learning for Sepsis Treatment, 2017.
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Summary
● Unsupervised learning

○ Autoencoders and variational autoencoders
○ Generative Adversarial Networks (GANs)

● Reinforcement learning

Next time: Guest lecture with Dr. Barbara Engelhardt (Genomics: Advanced 
Topics), extra credit opportunity

Next lecture after that: Interpretability, Fairness, and Ethics


