Lecture 13: Interpretability, Fairness,
and Ethics
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Announcements

e Midterm grades have been released
o Mean: 83.2% (74.92 / 90)

o Median: 85.8% (77.25/ 90)
o Std Dev: 9.61

e A3 was due yesterday
Project milestone due Friday 11/18

Extra credit opportunity: +0.25% on final class grade for attending upcoming

guest lecture live (applied post-curve, does not affect curve)
o Mon 11/28 in-person, Dr. Jonathan Chen, MD
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Many related concepts for today’s lecture

- Interpretability
- Explainability
- Transparency
- Uncertainty

- Robustness

- Fairness

- Ethics

- Bias

- Etc...
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Interpretability: a challenge in deep learning
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https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/DT.png

Serena Yeung BIODS 220: Al in Healthcare Lecture 13 - 4




Soft attention: building interpretability into the model structure
Output y

- Weight input variables by an
“attention weights” vector p

- Learn to dynamically produce p
for any given input, by making it
a function of the input x and a
fully connected layer f, (with
learnable parameters A)

- By optimizing for prediction
performance, network will learn
to produce p that gives stronger
weights to the most informative
features in x!

f

p is output of a softmax
function -> attention

Rest of the neural Wweights sum to 1
network

Z

!

Soft attention
weighting

“

3

Input X = [X,,X,, ,Xg]

Attention weights p
=[PP, . Ppl
Attention-weighted input
Z= I:Z1’22’... ’ZD:I

Learnable fully connected
layer f, with weights A
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Soft attention: building interpretability into the model

Admitted predicted risk of inpatient
to hospital mortality: 19.9%.
’ Patient dies 10 days later.
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Vancomycin, cancer, R lung malignant "... FINDINGS : CHEST LUNGS AND PLEURA: “.. has a complicated pleural

Metronidazole

-3:23 hours
Nursing Flowsheet

NUR RS BRADEN
SCALE SCORE : 22

effusion, and R lung empyema
who presents with increased
drainage from

R lung pleurx tract ... *

Also trained a model with “soft attention” on a simpler task
(in-hospital mortality, subset of data variables) to obtain

interpretability

Serena Yeung

Redemonstration of a moderate left pleural
effusion. interval removal of a right chest
tube within a loculated right pleural effusion
which contains foci of air. [..]. IMPRESSION: 1.
Interval progression of disease in the chest and
abdomen including increased mediastinal
lymphadenopathy, pleural/parenchymal
disease within the right lung, probable new
hepatic metastases and subcutaneous nodule
within the thorax [..]"
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space that requires IR guidance.
CT scan showing increased
loculted effusion on R compared
to date ..”

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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How can we try to interpret a trained
model?
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First Layer: Visualize Filters bt
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AlexNet:
64 x3x 11 x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016 . .
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017 Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare Lecture 13 - 8



Visualize the
filters/kernels
(raw weights)

We can visualize
filters at higher
layers, but not
that interesting

(these are taken
from ConvNetJS
CIFAR-10 demo)
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Last Layer

FC7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

Slide credit: CS231n
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Last Layer: Nearest Neighbors P
4096-dim vector | E—

208%

Test i |mage L2 Nearest neighbors in feature space
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Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012. Slide credit: CS231n
Figures reproduced with permission. ’
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Hense
1000

Last Layer: Dimensionality Reduction
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Common approaches: t-SNE
and UMAP

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Slide credit: CS231n
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Hense

Last Layer: Dimensionality Reduction

See high-resolution versions at
Krizhevsky et al, “I Net Classificati ith D Ci lutional N | Networks”, NIPS 2012. i it
riznevsky et a mageNe assification wi eep Convolutional Neural Networks htt //CSStan ed / eo |e/kar a S“de Credlt. 08231n

Figure reproduced with permission.

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
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http://cs.stanford.edu/people/karpathy/cnnembed/

Visualizing Activations

convl pl nl1 conv2 p2 n2 conv3 conv4 convd p5 fc6 fc7 fec8 prot

@

convb feature map is
128x13x13; visualize
as 128 13x13

grayscale images

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

Slide credit: CS231n
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations
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Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

Slide credit: CS231n
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Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Boat image is CCO public domain

Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCQ public domain _ _
Networks”, ECCV 2014 Go-Karts image is_CCO public domain Slide credit: CS231n
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

schooner

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

0.88

it

Slide credit: CS231n

Boat image is CCO public domain

Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain
” -
Networks”, ECCV 2014 Go-Karts image is_CCO public domain 5
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models

and Saliency Maps”, ICLR Workshop 2014. Slide credit: CS231n
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide credit: CS231n
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide credit: CS231n
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Saliency Maps: Segmentation without supervision

Use GrabCut on
saliency map

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models

and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission. Slide credit: CS231n
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class A cuaticniMABRING

grid (x, y) leading to *'+...+wn*!
9 A

the classification of
(z,y) = Zwkfk(f” y).

<200

<Z 00\

<Z00
(o]

Class
Activation
Map

(Australian terrier)

an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Saliency Maps: Class Activation Maps (CAM)

Relies on idea that global average pooling layers
- Zhou et al. 2015 aggregate “signal” for particular patterns

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class A cuaticniMABRING

grid (x, y) leading to *'+...+wn*!
9 A

the classification of
(z,y) = Zwkfk(x y).

<200
<zZOoOn|

<Z00

<Z00

Class
Activation
Map

(Australian terrier)

an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Class
Activation
Map

(Australian terrier)

Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015 of each pattern to respective class a

- Visualizes heatmap , —~
map) indicating the ﬁ 5 :
importance of the ———
grid (x, y) leading to * o
the classification of 5 O i

o(2,) = Zwkfk(a: ).

Weights of final classification layer gives importance
(class activation
activation at spatial Class Activation Mapping
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class A cuaticniMABRING

grid (x, y) leading to *'+...+wn*!
9 A

the classification of
(z,y) = Z w fy (z,y). Heat maps before GAP show the

<200
<zZOoOn|

<Z00

<Z00

Class
Activation
Map

(Australian terrier)

an image to class c.
spatially localized signal that will

Zhou et al. Learning Deep Features for Discriminative Localization, 2016. be agg reg ated
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class Activation Mapping
grid (x, y) leading to

” SIS W
the classification of ! !

an image to class c. \

<200
<zZOoOn|

<Z00

<Z00

Class
Activation
Map

(Australian terrier)

Add up all activation maps
ik wy, fr(z,y). p ps,
y) Z k ( weighted by importance to class

Zhou et al. Learning Deep Features for Discriminative Localization, 2016. (W_1 guua ,W_n) tO get CAM
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class A cuaticniMABRING

grid (x, y) leading to *'+...+wn*!
9 A

the classification of
CAM —» M (z,y) = Zwkfk(a: Y).

<200

<Z 00\

<Z00
(o]

Class
Activation
Map

(Australian terrier)

an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial Class A cuaticniMABRING

grid (x, y) leading to * N
9 A
Activation map for

the classification of
an image to class c.
<
(z,y) = Zwkfk(x y). kth filter in layer
before GAP

<200
<Z 00|\
<Z00
<Z00

Class
Activation
Map

(Australian terrier)

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial
grid (x, y) leading to
the classification of
an image to class c.

<200
<zZOoOn|

<Z00

<200

Class Activation Mapping

* +"'+Wn*
9 AN

Class
Activation
Map

(Australian terrier)

— Weight (importance)

(z,y) = Zwkfk(x y).

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

of kth filter activation
for predicting cth
class

Serena Yeung
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Saliency Maps: Class Activation Maps (CAM)

- Zhou et al. 2015

- Visualizes heatmap
(class activation
map) indicating the
importance of the
activation at spatial
grid (x, y) leading to
the classification of
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Grad-CAM: Extension of CAM to broader CNN
architectures

- No longer relies on architectures that have a “global average pooling layer”
at the end

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.
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Grad-CAM: Extension of CAM to broader CNN
architectures

- No longer relies on architectures that have a “global average pooling layer”
at the end

global average pooling
ﬁ

= 72 o

: 7 b ia Ak

7 J J

RN

gradients via backprop
Gradient of prediction for cth class
with respect to feature map
activations AX
of a convolutional layer

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.
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Grad-CAM: Extension of CAM to broader CNN
architectures

- No longer relies on architectures that have a “global average pooling layer”
at the end

global average pooling

Y T Y
af = & E Iy
& Z QA

(N
N——
gradients via backprop

Weight (importance) of kth neuron
in the CNN layer, for predicting the
cth class

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.
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Grad-CAM: Extension of CAM to broader CNN
architectures

- No longer relies on architectures that have a “global average pooling layer”
at the end

global average pooling
1 oy°
Y
ac — 7 A Ak c c
* z ZZ: zj: 0A%; LGrag-cam = RelU (E akAk>
k

\,-/ X ~ B>
gradients via backprop linear combination

“Saliency” heatmap for the cth class is based on weighting a
layer’s activation map for each neuron by the importance of
that neuron for predicting the class

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.
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Rajpurkar et al. 2017

- Binary classification of pneumonia
presence in chest X-rays

- Used ChestX-ray14 dataset with over :Zmzsl:tx-Raylmage
100,000 frontal X-ray images with 14 CheXNet
diseases 121-layer CNN

- 121-layer DenseNet CNN Ig)rmgzzgrtlia Positive (85%)

- Compared algorithm performance with 4
radiologists

- Also applied algorithm to other diseases to
surpass previous state-of-the-art on
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning. 2017.
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Rajpurkar et al. 2017

- Binary classification of pneumonia
presence in chest X-rays

- Used ChestX-ray14 dataset with over ::rr‘]gsl:tx-Raylmage
100,000 frontal X-ray images with 14 CheXNet
diseases 121-layer CNN
, , Output CAM visualization
121 Iayer DenseNet CNN Pnl;ugwgnia Positive (85%) /
- Compared algorithm performance with 4 . I 4
radiologists

- Also applied algorithm to other diseases to
surpass previous state-of-the-art on
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning. 2017.

Serena Yeung BIODS 220: Al in Healthcare Lecture 13 - 36



Rajpurkar et al. 2017

- Also showed CAM

visualizations of predictions for

other pathologies

Pathology Wang et al. (2017) Yao et al. (2017) CheXNet (ours)
Atelectasis 0.716 0.772 0.8094
Cardiomegaly 0.807 0.904 0.9248
Effusion 0.784 0.859 0.8638
Infiltration 0.609 0.695 0.7345
Mass 0.706 0.792 0.8676
Nodule 0.671 0.717 0.7802
Pneumonia 0.633 0.713 0.7680
Pneumothorax 0.806 0.841 0.8887
Consolidation 0.708 0.788 0.7901
Edema 0.835 0.882 0.8878
Emphysema 0.815 0.829 0.9371
Fibrosis 0.769 0.767 0.8047
Pleural Thickening 0.708 0.765 0.8062
Hernia 0.767 0.914 0.9164

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia
Detection on Chest X-Rays with Deep Learning. 2017.
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Rajpurkar et al. 2017

- Also showed CAM
visualizations of predictions for

other pathologies

(a) Patient with multifocal com-
munity acquired pneumonia. The
model correctly detects the airspace
disease in the left lower and right up-
per lobes to arrive at the pneumonia
diagnosis.

(b) Patient with a left lung nodule.
The model identifies the left lower
lobe lung nodule and correctly clas-
sifies the pathology.

(c) Patient with primary lung ma-
lignancy and two large masses, one
in the left lower lobe and one in
the right upper lobe adjacent to the
mediastinum. The model correctly
identifies both masses in the X-ray.

(d) Patient with a right-sided pneu- (e) Patient with a large right pleural (f) Patient with congestive heart
mothroax and chest tube. The effusion (fluid in the pleural space). failure and cardiomegaly (enlarged
model detects the abnormal lung The model correctly labels the effu- heart). The model correctly identi-
f . ; ot f to correctly predict the presence of sion and focuses on the right lower fies the enlarged cardiac silhouette.
Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia s tharss (collapasd Tong). it

Detection on Chest X-Rays with Deep Learning. 2017.
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A different type of approach: “distill” a complex
neural network to an interpretable decision tree

- Che et al. 2017: distill deep neural network for ICU outcome prediction into an
interpretable gradient boosting trees model (called mimic model)

- Benefits of distillation: 1) DNN can learn to correct for errors and noise in
training data; 2) classification probabilities from DNN give “soft labels”
containing more information; 3) Mimic approach can also be seen as a
regularization on more complex DNN

———————————————————

1
1
&8 L:.:[;):r;?ng Helper Mimic
Model ( ) ( ) Classifier @_. Model Output

Input

7

Che et al. Interpretable Deep Models for ICU Outcome Prediction, 2016.
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MOR (Mortality) VFD (Ventilator Free Days)
Methods
AUROC AUPRC AUROC AUPRC
SVM 0.6437 + 0.024 | 0.3408 £ 0.034 | 0.7251 +£0.023 | 0.7901 + 0.019
LR 0.6915 +£0.027 | 0.3736 £ 0.038 | 0.7592 + 0.021 | 0.8142 £ 0.019
Baselines
DT 0.6024 + 0.013 | 0.4369 £0.016 | 0.5794 +0.022 | 0.7570 £ 0.012
GBT 0.7196 £ 0.023 | 0.4171 +£0.040 | 0.7528 £ 0.017 | 0.8037 £ 0.018
DNN 0.7266 + 0.089 | 0.4117 £0.122 | 0.7752 +£ 0.054 | 0.8341 + 0.042
Deep Models GRU 0.7666 + 0.063 | 0.4587 £0.104 | 0.7723 £ 0.053 | 0.8131 + 0.058
DNN + GRU | 0.7813 + 0.028 | 0.4874 + 0.051 | 0.7896 + 0.019 | 0.8397 + 0.018
Best Mimic Model 0.7898 + 0.030 | 0.4766 + 0.050 | 0.7889 + 0.018 | 0.8324 £ 0.016

Serena Yeung

Che et al. Interpretable Deep Models for ICU Outcome Prediction, 2016.
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When can we trust the model?

- Notion of uncertainty: models can be more or less confident about a given
prediction. Model confidences are also sometimes more trustworthy than at
other times. Interpretability and explainability of the model gives indications of
how the model arrived at its conclusion.

- Notion of robustness: models may behave differently under different settings
(e.g. shift in the distribution of patient population / data). We may not be able
to trust the model’s outputs in the same way under some of these. Can we
quantify how the model may perform under different settings, and make it
“robust” under different settings that we care about?
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Nestor et al. 2019

- Showed that EHR models using standard feature representations suffered drops in
performance (evaluated by year) due to data drift from record keeping changes

- Introduced “clinical aggregations” of expert-defined similar clinical concepts for feature
representations that increased robustness

Mortality AUROC vs. Time, by Model & Representation
Raw PCA CUI Code Spanning  Clinical Aggregations

i 0.6

o
wn

[ |
2003 2005 2007 2009 2011 2013 2003 2005 2007 2009 2011 20132003 2005 2007 2009 2011 20132003 2005 2007 2009 2011 2013

Full History P
© © © 0 o~
o N O v O

Nestor et al. Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks, 2019.
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When can we trust the model?

- Notion of uncertainty: models can be more or less confident about a given
prediction. Interpretability and explainability of the model gives indications of
how the model arrived at its conclusion and how certain it is.

- Notion of robustness: models may behave differently under different settings
(e.g. shift in the distribution of patient population / data). We may not be able
to trust the model’s outputs in the same way under some of these. Can we
quantify how the model may perform under different settings, and make it
“robust” under different settings that we care about?

Ideas like distributionally robust optimization minimize worst-case
training loss over a set of groups (data distributions)
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Ethics: many questions around Al / human
collaboration in medicine
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Ethics: many questions around Al / human
collaboration in medicine

- How to make diagnosis and/or care decisions when the algorithm disagrees
with the human?

- How should Al algorithms work together with humans?

- How to handle machine error vs. human error?

- How to make sure Al algorithms don’t (perhaps inadvertently) discriminate
against certain populations?

- How to handle tradeoffs between algorithmic performance on some groups
vs. others?
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Algorithmic bias

- Algorithm may perform better for one population vs. other, due to e.g. biases
in training data or model

- E.g. Buolamwini and Gebru 2018: analysis of commercial gender
classification systems by race
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Buolamwini and Gebru. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, 2018.

Serena Yeung BIODS 220: Al in Healthcare Lecture 13 - 46



Chen et al. 2019

- Showed discrepancies in error rates by race, gender, insurance type, etc. for
models trained to make clinical predictions on MIMIC-III data

Error rate for predicting
ICU mortality by
gender

Female *

Male - *

0.182 0.184 0.186 0.188 0.190 0.192 0.194
Zero-One Loss

Chen et al. Can Al Help Reduce Disparities in General Medical and Mental Health Care? 2019.
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Chen et al. 2019

- Showed discrepancies in error rates by race, gender, insurance type, etc. for
models trained to make clinical predictions on MIMIC-III data

Error rate for predicting

ICU mortality by _
insurance type Private  HilH

Public HTH

0.16 0.17 0.18 0.19 0.20
Zero-One Loss

Chen et al. Can Al Help Reduce Disparities in General Medical and Mental Health Care? 2019.

Serena Yeung BIODS 220: Al in Healthcare Lecture 13 - 48



Chen et al. 2019

- Showed discrepancies in error rates by race, gender, insurance type, etc. for
models trained to make clinical predictions on MIMIC-III data

Error rate for predicting Asian- |_._L|

30-day psychiatric

readmission Black 1 ——
Hispanic I T e—
Other- *
White { i

014 016 0.18 020 0.22 0.24
Zero-One Loss

Chen et al. Can Al Help Reduce Disparities in General Medical and Mental Health Care? 2019.
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Obermeyer et al. 2019 b
. = = @=— = Black i
" White B
. . . . 8 Referred for screen Defaulted into program :
- Finding that algorithm for allocating !
high-risk patients (complex medical § I3
needs) to special programs are less likely § /:’T
to refer black people vs. white people g. 7
. T _ S & | % :r
- Algorithm used prediction of anticipated 2 /#{ xx//:
B * i
healthcare cost as a measure of b L, / |
complexity. But in training data, black - ‘ ,;:? 14 i
3 24 e | & :
patients had less healthcare cost for the = i gl ;
. . &'w»(x/ x 3 :
same severity of sickness, due to less BEE.Z o ;
x X o x’ﬁt’&«— P s ] '
access to care . e :
. . L [ Lo -
- Using other variables to predict risk 01 ;
0 10 20 30 40 50 60 70 80 90 100

reduced bias

Percentile of Algorithm Risk Score

Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations, 2019.
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More on fairness... there are many possible
definitions of fairness!

- Group-independent predictions: predictions should be independent of
group membership

- Equal metrics across groups: e.g. equal true positive rates or false positive
rates across groups

- Individual fairness: individuals who are similar with respect to a prediction
task should have similar outcomes

- Causal fairness: e.g. there should not be a causal pathway from a sensitive
attribute to the outcome prediction

Suresh and Guttag. A Framework for Understanding Unintended Consequences of Machine Learning, 2020.
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More on fairness... there are many possible
definitions of fairness!

- Group-independent predictions: predictions should be independent of
group membership

- Equal metrics across groups: e.g. equal true positive rates or false positive
rates across groups

- Individual fairness: individuals who are similar with respect to a prediction
task should have similar outcomes

- Causal fairness: e.g. there should not be a causal pathway from a sensitive

attribute to the outcome prediction  cannot satisfy all of these simultaneously: satisfying
“fairness” according to one definition generally leads
to a trade-off respect to another definition!

Suresh and Guttag. A Framework for Understanding Unintended Consequences of Machine Learning, 2020.
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Mitchell 2019: Model cards for Model Reporting

- Documentation accompanying trained models to detail performance characteristics

e Developed by researchers at Google and the University of Toronto, 2018, v1.

¢ Convolutional Neural Net.

e Pretrained for face recognition then fine-tuned with cross-entropy loss for binary
smiling classification.

Intended Use

e Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically finding smiling photos.

e Particularly intended for younger audiences.

e Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Mitchell et al. Model Cards for Model Reporting, 2019.
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Model Card - Smiling Detection in Images

Model Details Quantitative Analyses

False Positive Rate @ 0.5
old-male —e—
old-female —e—

young-female e+

young-male —e—
old —e—i

young Rl

male —o—

female 2 2|

all r&

0.000.020.040.060.080.100.12 0.14

False Negative Rate @ 0.5

Lecture 13 - 53




Mitchell 2019: Model cards for Model Reportlng

Factors old-male
Bissd ol bl ith ssioni f hol sl old-female o

e Based on known problems with computer vision face technology, potential rel- young-female 5
evant factors include groups for gender, age, race, and Fitzpatrick skin type; young-male o
hardware factors of camera type and lens type; and environmental factors of old ~
lighting and humidity. young o

e Evaluation factors are gender and age group, as annotated in the publicly available maie °
dataset CelebA [36]. Further possible factors not currently available in a public female o
smiling dataset. Gender and age determined by third-party annotators based all o

on visual presentation, following a set of examples of male/female gender and
young/old age. Further details available in [36].

0.000.020.04 0.06 0.080.100.12 0.14

False Discovery Rate @ 0.5

Metrics old-male —e—
e Evaluation metrics include False Positive Rate and False Negative Rate to old-female T
5 ¢ young-female Lo

measure disproportionate model performance errors across subgroups. False young-male ol

Discovery Rate and False Omission Rate, which measure the fraction of nega- old

tive (not smiling) and positive (smiling) predictions that are incorrectly predicted young o4

to be positive and negative, respectively, are also reported. [48] siils P
e Together, these four metrics provide values for different errors that can be calcu- female o

lated from the confusion matrix for binary classification systems. all 1ol

e These also correspond to metrics in recent definitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for different metrics corre-

0.000.020.040.060.080.100.120.14

Mitchell et al. Model Cards for Model Reporting, 2019.

BIODS 220: Al in Healthcare Lecture 13 - 54

Serena Yeung




Mitchell 2019: Model cards for Model Reporting

Training Data Evaluation Data old .
o 3 : ; young O
o CelebA [36], training data split. o CelebA [36], test data split. i o
e Chosen as a basic proof-of-concept.
Ethical Considerations E g female .
e Faces and annotations based on public figures (celebrities). No new information all v
{s inferied o antiotated. 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Caveats and Recommendations

e Does not capture race or skin type, which has been reported as a source of disproportionate errors [5].

e Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a
spectrum of genders.

e An ideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment
(lighting/humidity) details.

Mitchell et al. Model Cards for Model Reporting, 2019.
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Gebru 2020: Datasheets for Datasets

A Database for Studying Face Recognition in Unconstrained Environments

Labeled Faces in the Wild

Motivation

For what purpose was the dataset created? Was there a specific
task in mind? Was there a specific gap that needed to be filled? Please
provide a description.

Labeled Faces in the Wild was created to provide images that
can be used to study face recognition in the unconstrained setting
where image characteristics (such as pose, illumination, resolu-
tion, focus), subject demographic makeup (such as age, gender,
race) or appearance (such as hairstyle, makeup, clothing) cannot
be controlled. The dataset was created for the specific task of pair
matching: given a pair of images each containing a face, deter-
mine whether or not the images are of the same person.'

Who created this dataset (e.g., which team, research group) and on
behalf of which entity (e.g., company, institution, organization)?

The initial version of the dataset was created by Gary B. Huang,
Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most
of whom were researchers at the University of Massachusetts

The dataset does not contain all possible instances. There are
no known relationships between instances except for the fact that
they are all individuals who appeared in news sources on line, and
some individuals appear in multiple pairs.

What data does each instance consist of? "Raw” data (e.g., unpro-
cessed text or images)or features? In either case, please provide a de-
scription.

Each instance contains a pair of images that are 250 by 250 pixels
in JPEG 2.0 format.

Is there a label or target associated with each instance? If so, please
provide a description.

Each image is accompanied by a label indicating the name of the
person in the image.

Is any information missing from individual instances? If so, please
provide a description, explaining why this information is missing (e.g., be-
cause it was unavailable). This does not include intentionally removed
information, but might include, e.g., redacted text.

Gebru et al. Datasheets for Datasets. 2020.
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Next time

e Guest lecture: Dr. Jonathan Chen, MD
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