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Lecture 13: Interpretability, Fairness, 
and Ethics
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Announcements
● Midterm grades have been released

○ Mean: 83.2% (74.92 / 90)
○ Median: 85.8% (77.25 / 90)
○ Std Dev: 9.61

● A3 was due yesterday
● Project milestone due Friday 11/18
● Extra credit opportunity: +0.25% on final class grade for attending upcoming 

guest lecture live (applied post-curve, does not affect curve)
○ Mon 11/28 in-person, Dr. Jonathan Chen, MD
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Many related concepts for today’s lecture
- Interpretability
- Explainability
- Transparency
- Uncertainty
- Robustness
- Fairness
- Ethics
- Bias
- Etc...



4Serena Yeung BIODS 220: AI in Healthcare Lecture 13 -

Interpretability: a challenge in deep learning 

https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/DT.png

vs.
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Soft attention
weighting

Input x = [x1,x2,… ,xD] 
z

Attention weights p 
=[p1,p2,… ,pD] 

Output y

Rest of the neural 
network

- Weight input variables by an 
“attention weights” vector p

- Learn to dynamically produce p 
for any given input, by making it 
a function of the input x and a 
fully connected layer fA(with 
learnable parameters A) 

- By optimizing for prediction 
performance, network will learn 
to produce p that gives stronger 
weights to the most informative 
features in x!

Attention-weighted input 
z = [z1,z2,… ,zD] 

x fA p Learnable fully connected 
layer fA with weights A

Soft attention: building interpretability into the model structure
p is output of a softmax 
function -> attention 
weights sum to 1
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Also trained a model with “soft attention” on a simpler task 
(in-hospital mortality, subset of data variables) to obtain 
interpretability

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.

Soft attention: building interpretability into the model structure
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How can we try to interpret a trained 
model?
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017 Slide credit: CS231n



9Serena Yeung BIODS 220: AI in Healthcare Lecture 13 -9

Visualize the 
filters/kernels 
(raw weights)

We can visualize 
filters at higher 
layers, but not 
that interesting

(these are taken 
from ConvNetJS 
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 7

20 x 20 x 7 x 7

Slide credit: CS231n
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FC7 layer
Last Layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors

Slide credit: CS231n
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Last Layer: Nearest Neighbors

Test image L2 Nearest neighbors in feature space

4096-dim vector

Recall: Nearest neighbors 
in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

Slide credit: CS231n
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Common approaches: t-SNE 
and UMAP

Slide credit: CS231n
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

See high-resolution versions at  
http://cs.stanford.edu/people/karpathy/cnnembed/ Slide credit: CS231n

http://cs.stanford.edu/people/karpathy/cnnembed/
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Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 
128x13x13; visualize 
as 128 13x13 
grayscale images

Slide credit: CS231n
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.

Slide credit: CS231n
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Which pixels matter: 
Saliency via Occlusion
Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

P(elephant) = 0.95

P(elephant) = 0.75

Slide credit: CS231n

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: 
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Slide credit: CS231n

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide credit: CS231n
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide credit: CS231n
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Slide credit: CS231n
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Saliency Maps: Segmentation without supervision

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 
saliency map

Slide credit: CS231n
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Relies on idea that global average pooling layers 
aggregate “signal” for particular patterns
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Weights of final classification layer gives importance 
of each pattern to respective class
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Heat maps before GAP show the 
spatially localized signal that will 
be aggregated 
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Add up all activation maps, 
weighted by importance to class 
(w_1,...,w_n) to get CAM
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

CAM
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Activation map for 
kth filter in layer 
before GAP
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.

Weight (importance) 
of kth filter activation 
for predicting cth 
class
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Saliency Maps: Class Activation Maps (CAM)
- Zhou et al. 2015
- Visualizes heatmap 

(class activation 
map) indicating the 
importance of the 
activation at spatial 
grid (x, y) leading to 
the classification of 
an image to class c.

Zhou et al. Learning Deep Features for Discriminative Localization, 2016.
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Grad-CAM: Extension of CAM to broader CNN 
architectures

- No longer relies on architectures that have a “global average pooling layer” 
at the end

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.
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Grad-CAM: Extension of CAM to broader CNN 
architectures

- No longer relies on architectures that have a “global average pooling layer” 
at the end

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.

Gradient of prediction for cth class 
with respect to feature map 
activations Ak 

of a convolutional layer 
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Grad-CAM: Extension of CAM to broader CNN 
architectures

- No longer relies on architectures that have a “global average pooling layer” 
at the end

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.

Weight (importance) of kth neuron 
in the CNN layer, for predicting the 
cth class  
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Grad-CAM: Extension of CAM to broader CNN 
architectures

- No longer relies on architectures that have a “global average pooling layer” 
at the end

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2017.

“Saliency” heatmap for the cth class is based on weighting a 
layer’s activation map for each neuron by the importance of 
that neuron for predicting the class
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Rajpurkar et al. 2017
- Binary classification of pneumonia 

presence in chest X-rays
- Used ChestX-ray14 dataset with over 

100,000 frontal X-ray images with 14 
diseases

- 121-layer DenseNet CNN
- Compared algorithm performance with 4 

radiologists
- Also applied algorithm to other diseases to 

surpass previous state-of-the-art on 
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest 
X-Rays with Deep Learning. 2017.
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Rajpurkar et al. 2017
- Binary classification of pneumonia 

presence in chest X-rays
- Used ChestX-ray14 dataset with over 

100,000 frontal X-ray images with 14 
diseases

- 121-layer DenseNet CNN
- Compared algorithm performance with 4 

radiologists
- Also applied algorithm to other diseases to 

surpass previous state-of-the-art on 
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest 
X-Rays with Deep Learning. 2017.

CAM visualization
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Rajpurkar et al. 2017
- Also showed CAM 

visualizations of predictions for 
other pathologies

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia 
Detection on Chest X-Rays with Deep Learning. 2017.
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Rajpurkar et al. 2017
- Also showed CAM 

visualizations of predictions for 
other pathologies

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia 
Detection on Chest X-Rays with Deep Learning. 2017.
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A different type of approach: “distill” a complex 
neural network to an interpretable decision tree

- Che et al. 2017: distill deep neural network for ICU outcome prediction into an 
interpretable gradient boosting trees model (called mimic model)

- Benefits of distillation: 1) DNN can learn to correct for errors and noise in 
training data; 2) classification probabilities from DNN give “soft labels” 
containing more information; 3) Mimic approach can also be seen as a 
regularization on more complex DNN

Che et al. Interpretable Deep Models for ICU Outcome Prediction, 2016.
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A different type of approach: “distill” a complex 
neural network to an interpretable decision tree

Che et al. Interpretable Deep Models for ICU Outcome Prediction, 2016.
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When can we trust the model?

- Notion of uncertainty: models can be more or less confident about a given 
prediction. Model confidences are also sometimes more trustworthy than at 
other times. Interpretability and explainability of the model gives indications of 
how the model arrived at its conclusion.

-    Notion of robustness: models may behave differently under different settings 
(e.g. shift in the distribution of patient population / data). We may not be able 
to trust the model’s outputs in the same way under some of these. Can we 
quantify how the model may perform under different settings, and make it 
“robust” under different settings that we care about?
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Nestor et al. 2019
- Showed that EHR models using standard feature representations suffered drops in 

performance (evaluated by year) due to data drift from record keeping changes
- Introduced “clinical aggregations” of expert-defined similar clinical concepts for feature 

representations that increased robustness

Nestor et al. Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks, 2019.
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When can we trust the model?

- Notion of uncertainty: models can be more or less confident about a given 
prediction. Interpretability and explainability of the model gives indications of 
how the model arrived at its conclusion and how certain it is.

-    Notion of robustness: models may behave differently under different settings 
(e.g. shift in the distribution of patient population / data). We may not be able 
to trust the model’s outputs in the same way under some of these. Can we 
quantify how the model may perform under different settings, and make it 
“robust” under different settings that we care about?

Ideas like distributionally robust optimization minimize worst-case 
training loss over a set of groups (data distributions)
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Ethics: many questions around AI / human 
collaboration in medicine
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Ethics: many questions around AI / human 
collaboration in medicine

- How to make diagnosis and/or care decisions when the algorithm disagrees 
with the human?

- How should AI algorithms work together with humans?
- How to handle machine error vs. human error?
- How to make sure AI algorithms don’t (perhaps inadvertently) discriminate 

against certain populations?
- How to handle tradeoffs between algorithmic performance on some groups 

vs. others?
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Algorithmic bias
- Algorithm may perform better for one population vs. other, due to e.g. biases 

in training data or model
- E.g. Buolamwini and Gebru 2018: analysis of commercial gender 

classification systems by race

Buolamwini and Gebru. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, 2018.
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Chen et al. 2019
- Showed discrepancies in error rates by race, gender, insurance type, etc. for 

models trained to make clinical predictions on MIMIC-III data

Error rate for predicting 
ICU mortality by 
gender

Chen et al. Can AI Help Reduce Disparities in General Medical and Mental Health Care? 2019.
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Chen et al. 2019
- Showed discrepancies in error rates by race, gender, insurance type, etc. for 

models trained to make clinical predictions on MIMIC-III data

Error rate for predicting 
ICU mortality by 
insurance type

Chen et al. Can AI Help Reduce Disparities in General Medical and Mental Health Care? 2019.
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Chen et al. 2019
- Showed discrepancies in error rates by race, gender, insurance type, etc. for 

models trained to make clinical predictions on MIMIC-III data

Error rate for predicting 
30-day psychiatric 
readmission

Chen et al. Can AI Help Reduce Disparities in General Medical and Mental Health Care? 2019.
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Obermeyer et al. 2019
- Finding that algorithm for allocating 

high-risk patients (complex medical 
needs) to special programs are less likely 
to refer black people vs. white people

- Algorithm used prediction of anticipated 
healthcare cost as a measure of 
complexity. But in training data, black 
patients had less healthcare cost for the 
same severity of sickness, due to less 
access to care

- Using other variables to predict risk 
reduced bias

Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations, 2019.
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More on fairness… there are many possible 
definitions of fairness!

- Group-independent predictions: predictions should be independent of 
group membership

- Equal metrics across groups: e.g. equal true positive rates or false positive 
rates across groups

- Individual fairness: individuals who are similar with respect to a prediction 
task should have similar outcomes

- Causal fairness: e.g. there should not be a causal pathway from a sensitive 
attribute to the outcome prediction

Suresh and Guttag. A Framework for Understanding Unintended Consequences of Machine Learning, 2020.
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More on fairness… there are many possible 
definitions of fairness!

- Group-independent predictions: predictions should be independent of 
group membership

- Equal metrics across groups: e.g. equal true positive rates or false positive 
rates across groups

- Individual fairness: individuals who are similar with respect to a prediction 
task should have similar outcomes

- Causal fairness: e.g. there should not be a causal pathway from a sensitive 
attribute to the outcome prediction

Suresh and Guttag. A Framework for Understanding Unintended Consequences of Machine Learning, 2020.

Cannot satisfy all of these simultaneously: satisfying 
“fairness” according to one definition generally leads 
to a trade-off respect to another definition!
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Mitchell 2019: Model cards for Model Reporting
- Documentation accompanying trained models to detail performance characteristics

Mitchell et al. Model Cards for Model Reporting, 2019.
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Mitchell 2019: Model cards for Model Reporting

Mitchell et al. Model Cards for Model Reporting, 2019.
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Mitchell 2019: Model cards for Model Reporting

Mitchell et al. Model Cards for Model Reporting, 2019.
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Gebru 2020: Datasheets for Datasets

Gebru et al. Datasheets for Datasets. 2020.
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Next time
● Guest lecture: Dr. Jonathan Chen, MD


