Lecture 14: Distributed Learning, Security, and Privacy

Serena Yeung

BIODS 220: AI in Healthcare

Announcements

- TA office hours will be project advising sessions this week
 - Attendance is worth 5% of project grade
- Last lecture session will be next Monday 12/5 *over zoom* (link will be posted in Ed)
 - Course conclusion + Guest lecture from Zack Harned, JD on legal and regulatory aspects of AI in healthcare
 - Extra credit opportunity: +0.25% on final class grade for attending on zoom (applied post-curve, does not affect curve). Attendance will be recorded by the teaching staff during the lecture.
 - Please prepare to turn your video on so that the guest lecturer can see you in person!

Agenda

- Distributed Learning and Federated Learning
- Privacy and Differential Privacy

BIODS 220: AI in Healthcare

Distributed Learning

- Sharing the computational load of training a model among multiple worker nodes

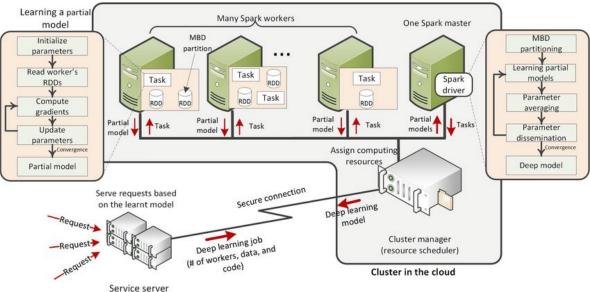


Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Distributed Learning

- Sharing the computational load of training a model among multiple worker nodes

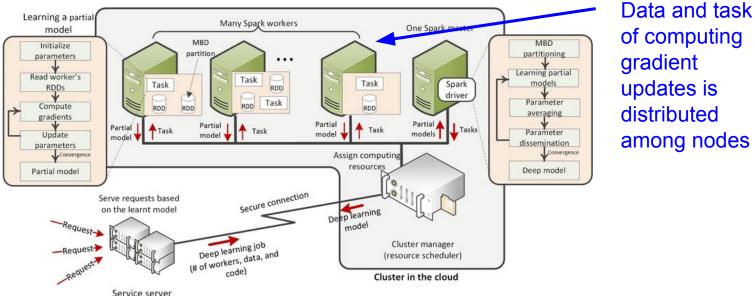


Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Distributed Learning

- Sharing the computational load of training a model among multiple worker nodes

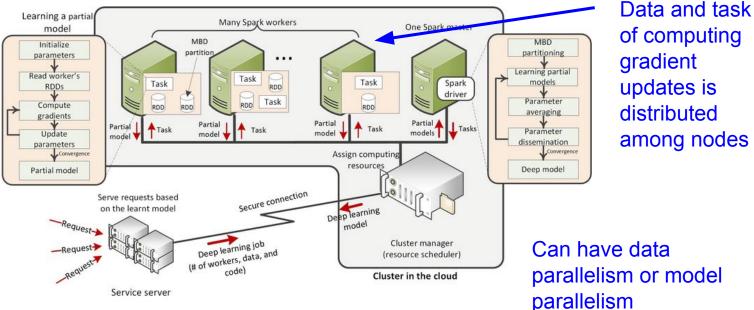


Figure credit: Alsheikh et al. Mobile big data analytics using deep learning and apache spark, 2016.

Lecture 14 - 6

Serena Yeung

BIODS 220: AI in Healthcare

- Related to distributed computing, but with an important property for many medical settings: data is decentralized and never leaves local silos. Central server controls training across decentralized sources.

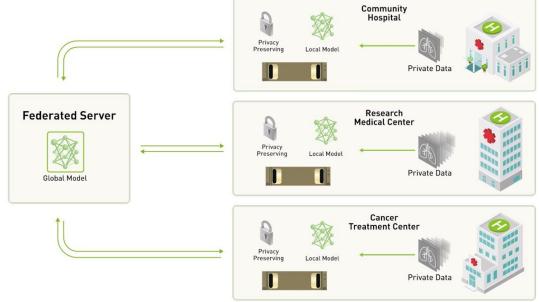


Figure credit: https://blogs.nvidia.com/wp-content/uploads/2019/10/federated_learning_animation_still_white.png

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

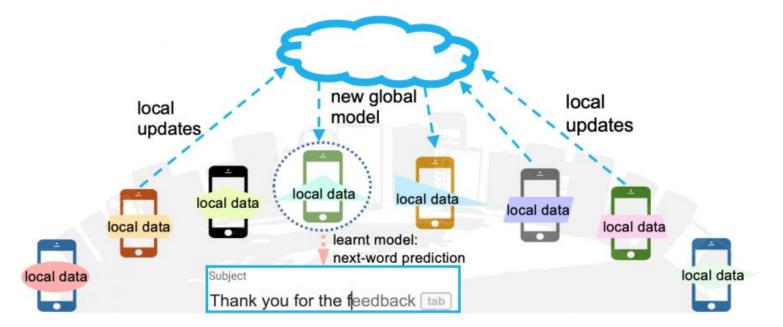


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

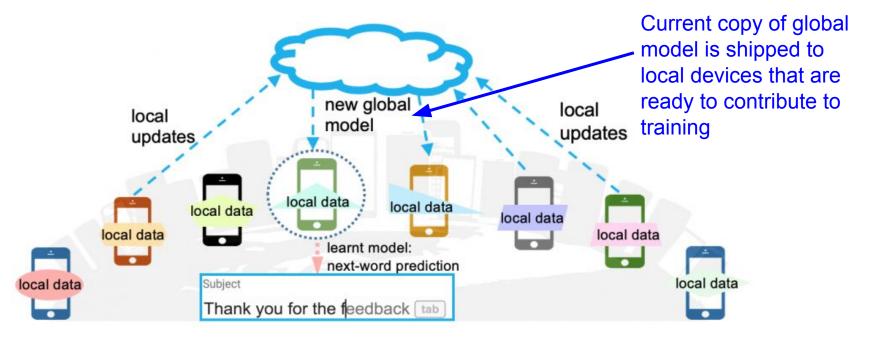


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

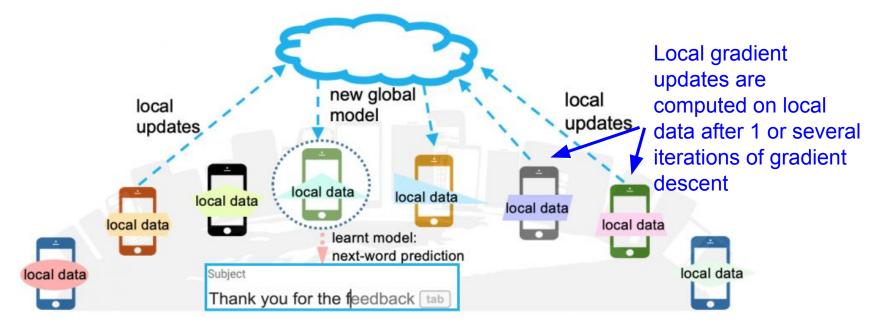


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: Al in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

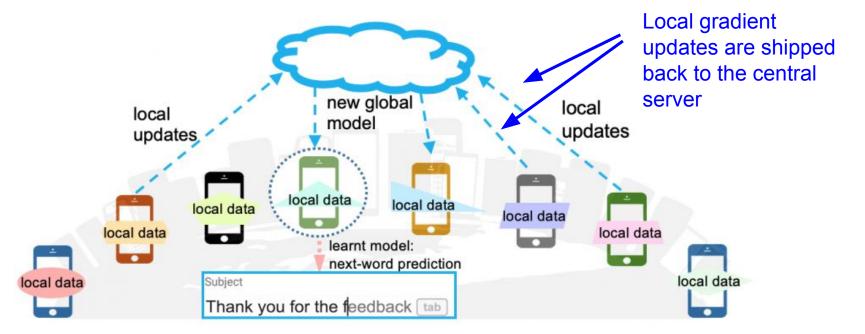


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

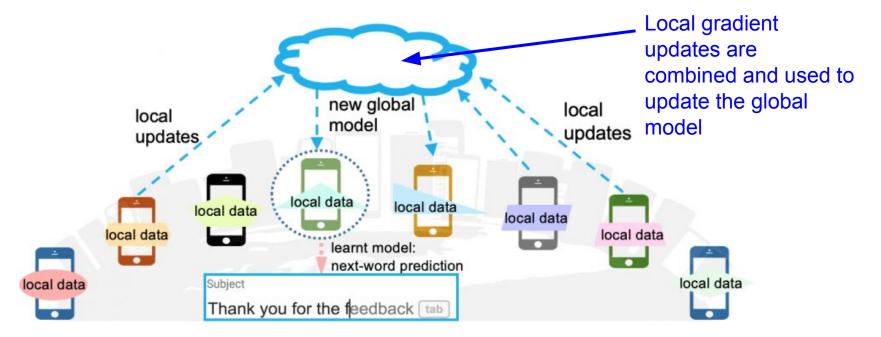


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a next-word prediction model from many individual cell phones

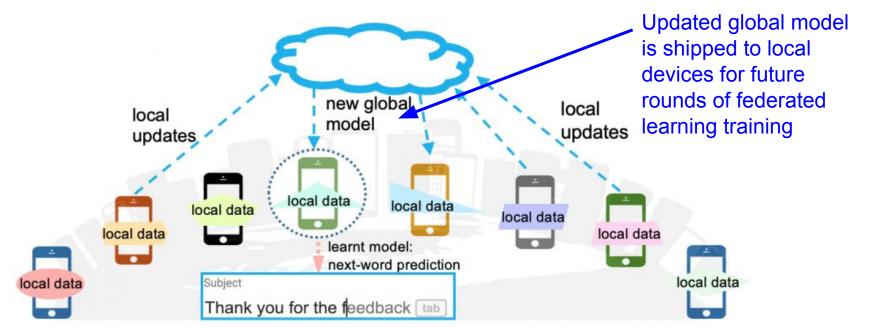


Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

- Example: learning a personalized healthcare model from data across different healthcare organizations

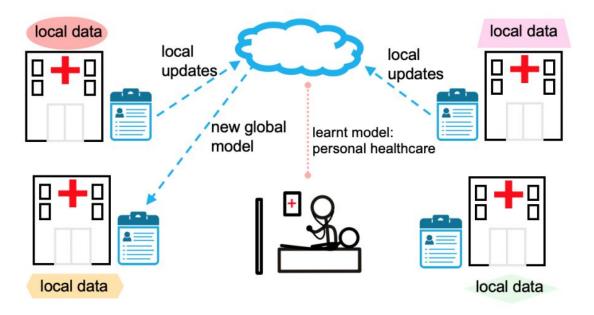


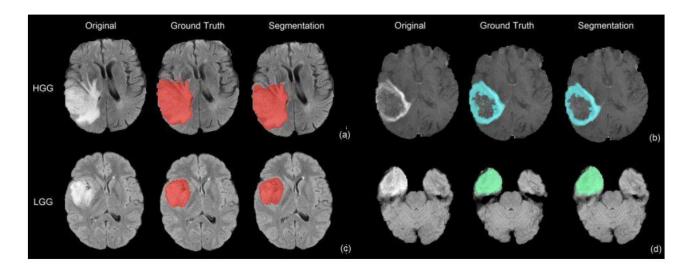
Figure credit: https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/

Serena Yeung

BIODS 220: AI in Healthcare

From earlier: BRATS brain tumor segmentation dataset

- Segmentation of tumors in brain MR image slices
- BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRIs
- U-Net architecture, Dice loss function



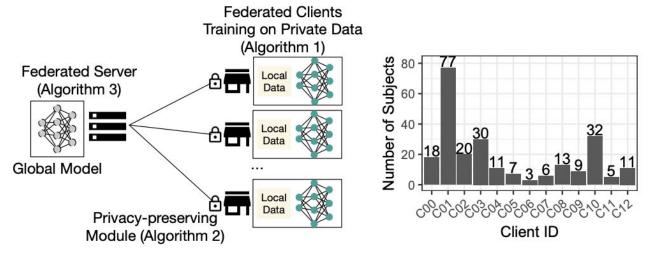
Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.

Serena Yeung

BIODS 220: AI in Healthcare

Li et al. 2019

- NVIDIA Clara's Federated Learning system for medical imaging data
- Used federated learning to train segmentation model on BRATS
- Achieved comparable performance to non-federated learning, training somewhat slower but data "silos" preserved



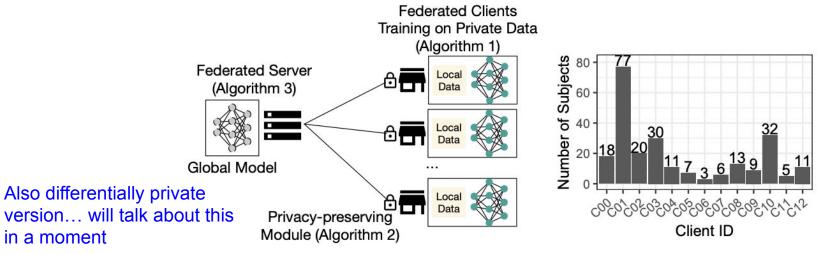
Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.

Serena Yeung

BIODS 220: AI in Healthcare

Li et al. 2019

- NVIDIA Clara's Federated Learning system for medical imaging data
- Used federated learning to train segmentation model on BRATS
- Achieved comparable performance to non-federated learning, training somewhat slower but data "silos" preserved



Li et al. Privacy-preserving Federated Brain Tumour Segmentation, 2019.

Serena Yeung

BIODS 220: AI in Healthcare

Privacy: HIPAA

Health Insurance Portability and Accountability Act (HIPAA), 1996: created "Privacy Rule" for how healthcare entities must protect the privacy of patients' medical information

18 HIPAA identifiers (Protected Health Information):

Total Data Management

Lecture 14 - 18

Figure credit: https://www.jet-software.com/en/data-masking-hipaa/

Serena Yeung

BIODS 220: AI in Healthcare

Risks of data re-identification

Data triangulation: a person may be de-identified as to one data set, but the knowledge that they are a member of another available data set may allow them to be reidentified

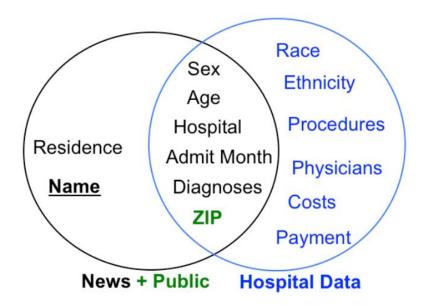


Figure credit: Sweeney et al. Matching Known Patients to Health Records in Washington State Data, 2011.

Serena Yeung

BIODS 220: AI in Healthcare

Matching Known Patients to Health Records in Washington State Data

News stories (e.g., those containing the word "hospitalized") contain identifying information that could be used to identify medical records in the state medical record database, for 43% of studied cases

Number		Name				General			Number of	
of Fields	c	or Street	Gender	Туре	Age	Address	Hospital	Details	Subjects	Totals
3									1	1
	а								5	
	b	•			-				7	14
4	С								1	14
	d				-				1	
	а								6	
	b	•	•	-		-			7	27
5	С			-					4	
э	d	-	-	-			-		6	
	е								3	
	f			-			•		1	
	а								4	
6	b	-	-		-	-		•	9	24
D	С		•				•		17	31
	d	•	•	-		-	•		1	
7						-			17	17
								Totals	90	90

Distribution of values for fields harvested from news stories

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.

Serena Yeung

BIODS 220: Al in Healthcare

Matching Known Patients to Health Records in Washington State Data

MAN, 61, THROWN FROM MOTORCYCLE A 61-year-old Soap Lake man was hospitalized Saturday afternoon after he was thrown from his motorcycle. Raymond Boylston was riding his 2003 Harley-Davidson north on Highway 25, when he failed to negotiate a curve to the left. His motorcycle became airborne before landing in a wooded area. Boylston was thrown from the bike; he was wearing a helmet during the 12:24 p.m. incident. He was taken to Lincoln Hospital. [Spokesman Review 10/23/2011]

Figure 1. Sample extract of a news story that contains *name*, *age*, *residential information*, *hospital*, *incident date*, and *type of incident*.

	NEWS STORIES			
	Number of Subjects Percent			
Motor Vehicle	51	57%		
Assault	12	13%		
Medical	13	14%		
Other	14	16%		
Totals	90			

Table 2. Distribution of news stories by type of incident for 90 subjects.

Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.

Serena Yeung

BIODS 220: AI in Healthcare

Matching Known Patients to Health Records in Washington State Data

Hospital	162: Sacred Heart		
	Medical Center in		
	Providence		
Admit Type	1: Emergency		
Type of Stay	1: Inpatient		
Length of Stay	6 days		
Discharge Date	Oct-2011		
Discharge	6: Dsch/Trfn to home		
Status	under the care of an		
	health service		
	organization		
Charges	\$71708.47		
Payers	1: Medicare		
	6: Commercial insurance		
	625: Other government		
	sponsored patients		
Emergency	E8162: motor vehicle		
Codes	traffic accident due to		
	loss of control; loss		
	control mv-mocycl		

Diagnosis	80843: closed fracture			
Codes	of other specified part			
	of pelvis			
	51851: pulmonary			
	insufficiency following			
	trauma & surgery			
	86500: injury to spleen			
	without mention of open			
	wound into cavity			
	80705: closed fracture			
	of rib(s); fracture			
	five ribs-close			
	5849: acute renal			
	failure; unspecified			

Age in Years	60			
Age in Months	725			
Gender	Male			
ZIP	98851			
State Reside	WA			
Race/Ethnicity	White, Non-Hispanic			
Procedure	5781: Suture bladder			
Codes	laceration			
	7939: 7919: Open/Closed			
	reduction of fracture			
	of other specified bone			
Physicians				

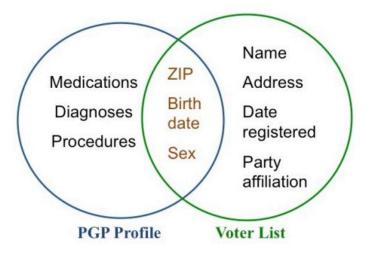
Sweeney. Matching Known Patients to Health Records in Washington State Data, 2011.

Serena Yeung

BIODS 220: AI in Healthcare

Identifying Participants in the Personal Genome Project by Name

Linked demographics information in the Personal Genome Project (PGP) to public records such as voter lists, to correctly identify 84 to 97% of profiles for which guessed names were provided to PGP staff



	Wrong	Total	Correct%
Name	19	103	82%
Voter Data	9	130	93%
Public Records	20	156	87%

Table 2. Correctness of different re-identification strategies. Errors in matching embedded names and other strategies are due primarily to uses of nicknames rather than real names.

Sweeney. Identifying Participants in the Personal Genome Project by Name, 2013.

Serena Yeung

BIODS 220: AI in Healthcare

K-anonymity

A data release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release.

	Race	Birth	Gender	ZIP	Problem
t1	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t3	Black	1965	f	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
t5	Black	1964	f	0213*	obesity
t6	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
t10	White	1967	m	0213*	chest pain
t11	White	1967	m	0213*	chest pain

Figure 2 Example of k-anonymity, where k=2 and Ql={Race, Birth, Gender, ZIP}

Lecture 14 - 24

Sweeney. K-anonymity: a model for protecting privacy. 2002.

Serena Yeung

BIODS 220: AI in Healthcare

K-anonymity

Race	BirthDate	Gender	ZIP	Problem
black	9/20/1965	male	02141	short of breath
black	2/14/1965	male	02141	chest pain
black	10/23/1965	female	02138	painful eye
black	8/24/1965	female	02138	wheezing
black	11/7/1964	female	02138	obesity
black	12/1/1964	female	02138	chest pain
white	10/23/1964	male	02138	short of breath
white	3/15/1965	female	02139	hypertension
white	8/13/1964	male	02139	obesity
white	5/5/1964	male	02139	fever
white	2/13/1967	male	02138	vomiting
white	3/21/1967	male	02138	back pain

PT

2 k-anonymity
tables (where
k = 2)

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
person	1965	female	0213*	painful eye
person	1965	female	0213*	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	0213*	short of breath
person	1965	female	0213*	hypertension
white	1964	male	0213*	obesity
white	1964	male	0213*	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain
7		GT1		

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain
		CT2	-	

GT3

Sweeney. K-anonymity: a model for protecting privacy. 2002.

Serena Yeung

BIODS 220: AI in Healthcare

Re-identification from ML models

- White-box (as opposed to black-box) setting: have access to model parameters, e.g. local model downloaded on device to run inference
- Model inversion attack: can use gradient descent if model parameters are available, to infer sensitive features

Algorithm 1 Inversion attack for facial recognition models.

```
1: function MI-FACE(label, \alpha, \beta, \gamma, \lambda)
              c(\mathbf{x}) \stackrel{\text{def}}{=} 1 - \tilde{f}_{label}(\mathbf{x}) + \text{AUXTERM}(\mathbf{x})
  2:
  3:
              \mathbf{x}_0 \leftarrow \mathbf{0}
 4:
              for i \leftarrow 1 \dots \alpha do
  5:
                     \mathbf{x}_i \leftarrow \text{PROCESS}(\mathbf{x}_{i-1} - \lambda \cdot \nabla c(\mathbf{x}_{i-1}))
                     if c(\mathbf{x}_i) \geq \max(c(\mathbf{x}_{i-1}), \ldots, c(\mathbf{x}_{i-\beta})) then
 6:
  7:
                             break
 8:
                     if c(\mathbf{x}_i) \leq \gamma then
 9:
                             break
               return [\arg\min_{\mathbf{x}_i}(c(\mathbf{x}_i)), \min_{\mathbf{x}_i}(c(\mathbf{x}_i))]
10:
```


Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

Fredrickson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, 2015.

Serena Yeung

BIODS 220: AI in Healthcare

Differential privacy

Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one individual), is "hardly different". Mathematical guarantees on this idea.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Differential privacy

Key idea: output for a dataset, vs. the dataset with a difference for a single entry (e.g., one individual), is "hardly different". Mathematical guarantees on this idea.

Definition 1. A randomized mechanism $\mathcal{M}: \mathcal{D} \to \mathcal{R}$ with domain \mathcal{D} and range \mathcal{R} satisfies (ε, δ) -differential privacy if for any two adjacent inputs $d, d' \in \mathcal{D}$ and for any subset of outputs $S \subseteq \mathcal{R}$ it holds that

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta.$

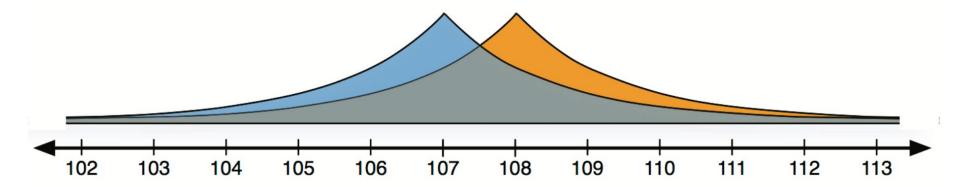
Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Differential privacy

Simple intuition behind how we can achieve differential privacy: adding noise!



Example of reporting a value with Laplacian noise added

Figure credit: https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-03.md

Serena Yeung

BIODS 220: AI in Healthcare

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Training differentially private deep learning models Compute gradient as usual

Algorithm 1 Differentially private SGD (Outline) **Input:** Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Clip the gradient

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{I} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Add noise for differential privacy

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

Definition 1. A randomized mechanism $\mathcal{M} \colon \mathcal{D} \to \mathcal{R}$ with domain \mathcal{D} and range \mathcal{R} satisfies (ε, δ) -differential privacy if for any two adjacent inputs $d, d' \in \mathcal{D}$ and for any subset of outputs $S \subseteq \mathcal{R}$ it holds that

 $\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta.$

Compute overall privacy cost

Algorithm 1 Differentially private SGD (Outline)

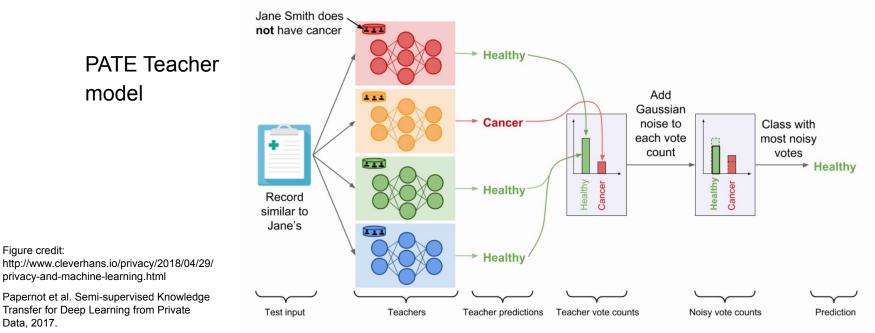
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{I} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi et al. Deep Learning with Differential Privacy, 2016.

Serena Yeung

BIODS 220: AI in Healthcare

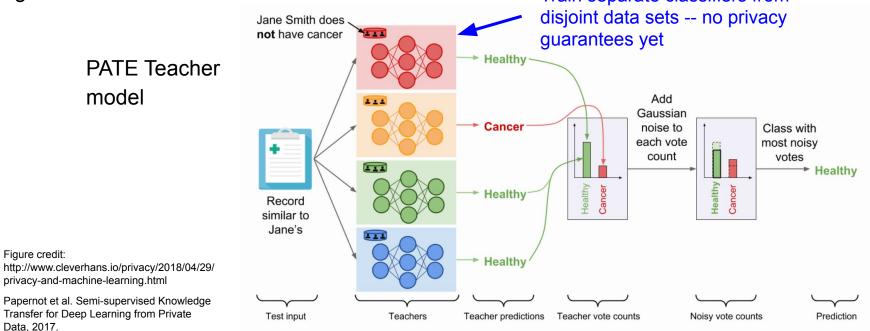
Approach to combine data from multiple disjoint sensitive populations, with privacy guarantees



Serena Yeung

BIODS 220: AI in Healthcare

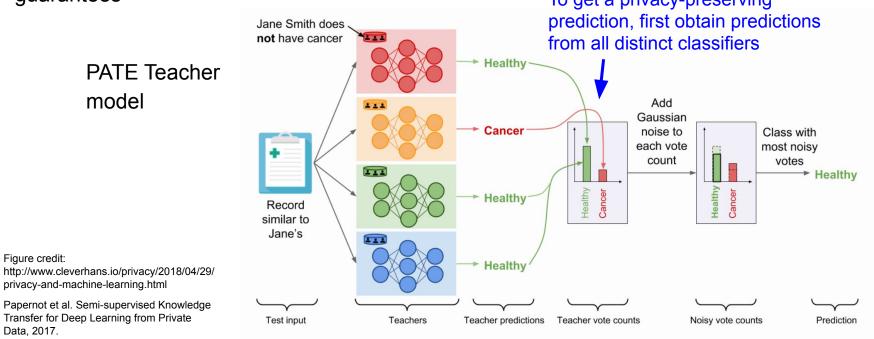
Approach to combine data from multiple disjoint sensitive populations, with privacy guarantees Train separate classifiers from



Serena Yeung

BIODS 220: AI in Healthcare

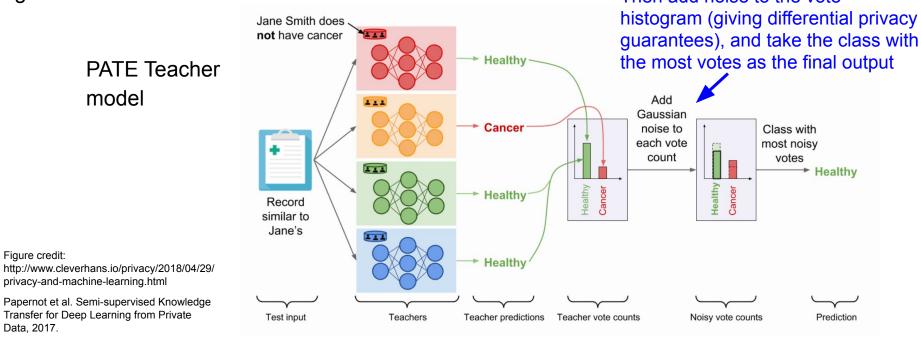
Approach to combine data from multiple disjoint sensitive populations, with privacy guarantees To get a privacy-preserving



Serena Yeung

BIODS 220: AI in Healthcare

Approach to combine data from multiple disjoint sensitive populations, with privacy guarantees



Serena Yeung

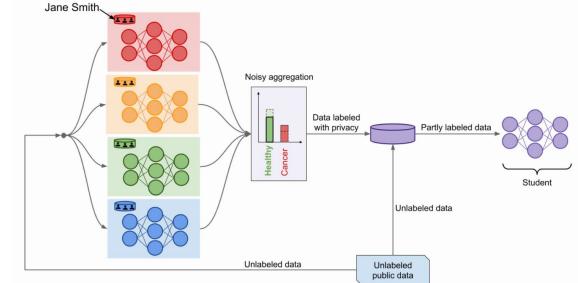
BIODS 220: AI in Healthcare

This teacher model alone can still be compromised if too many queries are performed (privacy cost builds up with each query, so privacy guarantees become meaningless with too many queries), or if model parameters are made accessible (and attackable) e.g. distributed in local application

PATE Student model uses public data to train a model replicating noisy aggregated teacher outputs

Figure credit: http://www.cleverhans.io/privacy/2018/04/29/ privacy-and-machine-learning.html

Papernot et al. Semi-supervised Knowledge Transfer for Deep Learning from Private Data, 2017.



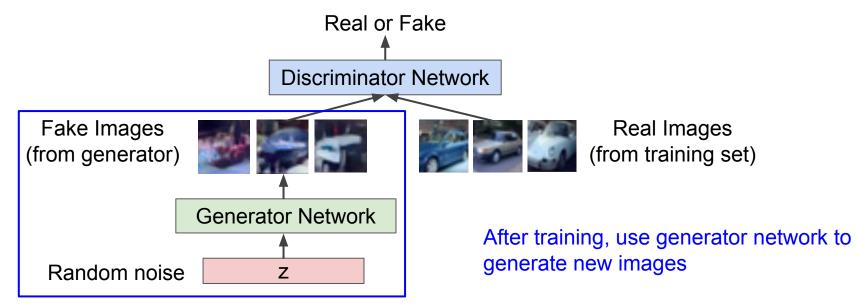
Serena Yeung

BIODS 220: AI in Healthcare

Remember GANs: Two-player game

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

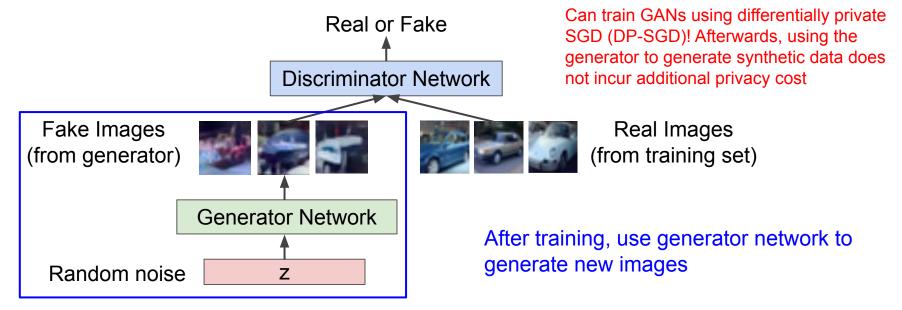
Serena Yeung

BIODS 220: AI in Healthcare

Remember GANs: Two-player game

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Xie et al. Differentially Private Generative Adversarial Network, 2018.

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Serena Yeung

BIODS 220: AI in Healthcare

Can work with differential privacy within deep learning frameworks

Implementation of DP-SGD

```
optimizer = optimizers.dp_optimizer.DPGradientDescentGaussianOptimizer(
    l2_norm_clip=FLAGS.l2_norm_clip,
    noise_multiplier=FLAGS.noise_multiplier,
    num_microbatches=FLAGS.microbatches,
    learning_rate=FLAGS.learning_rate,
    population_size=60000)
train_op = optimizer.minimize(loss=vector_loss)
```

Utilities for calculating epsilon

epsilon = get_privacy_spent(orders, rdp, target_delta=1e-5)[0]

https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html http://www.cleverhans.io/privacy/2019/03/26/machine-learning-with-differential-privacy-in-tensorflow.html

privacy

Serena Yeung

BIODS 220: AI in Healthcare

Today we covered:

- Distributed Learning and Federated Learning
- Privacy and Differential Privacy

Next time: Guest lecture from **Zach Harned**, **JD**, **over zoom**, discussing legal and regulatory aspects of AI in healthcare

BIODS 220: AI in Healthcare

