Lecture 3:
Medical Images:

Classification (Part 2),
Segmentation
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Announcements

- AO due tomorrow

- A1 will be released tomorrow, due in 2 weeks (Tue 10/18)
- You will need to download several datasets to do the assignment. Make sure to start early!
- 3 parts:
- Medical image classification
- Medical image segmentation in 2D
- Medical image segmentation in 3D, with semi-supervised learning

- Tensorflow Review Session this Fri 1:30pm, helpful for A1
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Announcements - Course project

- Start thinking about your course project
- Project proposal due Fri 10/21
- See hitp://biods220.stanford.edu/finalproject.html for project components and requirements
- Released on Ed (#35): some project resources (open source datasets, and ideas curated
from the Stanford Med School and broader community)
- Contributed project ideas are not vetted, you need to do your due diligence
- Is the dataset easily accessible and well suited to machine learning? Access and
play with the data before the project proposal, and make sure you can use GPU
compute.
- Is there a clearly defined task for which you can apply deep learning?
- Can you evaluate your method?
- Will need to answer these questions in the project proposal
- If you are not sure, come to any of the teaching staff office hours. We are happy to
discuss your project with you!
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Announcements - Course project

- Preview of graded components:
- Proposal: Due Fri 10/21.
- Milestone: Due Fri 11/18.
- TA project advising sessions: after the milestone, details TBD.
- Final project poster session: In person, during the final exam period for
this course (Wed 12/14, 3:30-6:30pm)
- Final report due: Fri 12/16.
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Google dataset search

datasetsearch.research.google.com

Go gIe Q_  lung nodule detection| X o B

~ Updated Date ~ Download Format ~ Usage Rights Free

100+ datasets found
kaggle

kaggle Lung Nodule Malignancy

www.kaggle.com Lung Nodule Malignancy
Updated Sep 21, 2017 From icious nodules to di
LUng Nodule Analysis (LUNA16)
218 scholarly articles cite this dataset (View in Google Scholar)
Alllmages

academictorrents.com
Dataset updated Sep 21,2017
Updated Jul 15,2018

Authors
i o Kevin Madt
Detection of artificial Sece
pulmonary lung nodules in... License
figshare.com Other (specified in description)

Updated Jan 4, 2018 ’ .
4 Available download formats from providers

hdf5 (64618370 bytes), csv (65813 bytes), zip (175233019 bytes), tif (110548836 bytes)

Applying Ant Colony Description
Optimization algorithms and...
Context
www.researchgate.net
Updated Dec 6, 2013 The DataScienceBow! covered the whole process of diagnosing lung cancer and | am to make the individual steps more clear. After segmenting lungs and ident

malignant or benign.
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Announcements - Review sessions

- Was in Alway M112 last Friday, but will be in Alway M106 moving forward
- Due to incorrect location on Friday, did not get session recording

- Last year’s video recording of the material (almost identical, slightly
re-arranged) is on Canvas (see pinned Ed post). Was a lecture last year, spun
out into review session this year based on student feedback.

- Apparently the university may have also recorded in M112 on Friday, they are
working on getting that recording out so it may also be shared.
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Last time: Deep learning models for image classification

s

X-rays (invented 1895). CT (invented 1972). MRI (invented 1977).
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_ consider a second, green filter
Convolutional layer

_— 32x32x3 image activation maps

5x5x3 filter
2
@>® ”

convolve (slide) over all
spatial locations

32 / 28

Slide credit: CS231n
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Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32 28 24
CONV, CONV, CONV,
RelU RelLU RelLU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 filters 24
3 6 10

Slide credit: CS231n
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Bar et al. 2015

- Did not train a deep learning model

on the medical data Convolution Fully connected
- Instead, extracted features from an K : e I m——
AlexNet trained on ImageNet [ N/ R ol
- 5th, 6th, and 7th layers R~ N ;f;;g;ted Yt ] f;, e :‘ ]
- Used extracted features with an P aver | Pl [ 1 OSO

SVM classifier : VIS it OO
- Performed zero-mean unit-variance
normalization of all features

y

- Evaluated combination with other Input Decafo) L7 (Decaf:)
4096 4096
hand_craf‘ted image features Activations Activations  Activations

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

- Did not train a deep learning model
on the medical data
- Instead, extracted features from an

Co

very similar

very different

dataset dataset

very little data ||Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
features on different layer

features

AlexNet trained on ImageNet
- 5th, 6th, and 7th layers

- Used extracted features with an
SVM classifier

- Performed zero-mean unit-variance
normalization of all features

- Evaluated combination with other
hand-crafted image features

Input A 1

quite a lot of
data

Finetune a few
layers

Finetune a large
number
of layers

layer

acuvauon

L2

— L

=» |5(Decafs) L6 (Decafe) L7 (Decaf)
4096 4096

Activations  Activations

9216
Activations

I
W

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDest+Decaf LS
Sensitivity 0.71 0.79 0.79 0.93 0.86 0.86 0.93
Specificity 0.77 0.92 0.91 0.84 0.86 0.80 0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Q: How might we
interpret the AUC vs.
CNN feature trends?

Bar et al. 2015

Table 1. Right Pleural Effusion Condition.

Low Level High Level Deep _—~— A / Fusion
LBP GIST | PiCoDes Decaf LS | Decaf LeADecat 17 |AiCoDes+Decaf L5
Sensitivity | 0.71 0.79 0.79 0.93 086~ ARG 0.93
Specificity 077 092 [ 0.91 0.84 4~T0.86 4~ | 080 & |0.84
AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93
Table 2. Healthy vs. Pathology.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf L5 | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81
Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79
AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79
Table 3. Enlarged Heart Condition.
Low Level High Level Deep Fusion
LBP GIST PiCoDes Decaf LS | Decaf L6 | Decaf L7 | PiCoDes+Decaf LS
Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83
Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84
AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89

Bar et al. Deep learning with non-medical training used for chest pathology identification. SPIE, 2015.
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Ciompi et al. 2015

- Task: classification of lung nodules
in 3D CT scans as peri-fissural
nodules (PFN, likely to be benign)
or not

- Dataset: 568 nodules from 1729
scans at a single institution. (65
typical PFNs, 19 atypical PFNs, 484
non-PFNSs).

- Data pre-processing: prescaling
from CT hounsfield units (HU) into
[0,255]. Replicate 3x across R,G,B
channels to match input dimensions

axial

coronal

sagittal

Of |mageNet-tl’alned CN NS- Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Ciompi et al. 2015

- Also extracted features from a deep learning model trained on ImageNet
- Overfeat feature extractor (similar to AlexNet, but trained using additional losses
for localization and detection)
- To capture 3D information, extracted features from 3 different 2D views of each
nodule, then input into 2-stage classifier (independent predictions on each view
first, then outputs combined into second classifier).

%Y
X
V4

OverFeat features test test
axial ol —— | overfeat-a |—— | Hra |
q
' coronal — overfeat-c | —— | Hq-c | ——| Ho |—
sagittal — | overfeat-s | ——| Hi-s =

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015.
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Gulshan et al. 2016

- Task: Binary classification of referable
diabetic retinopathy from retinal fundus
photographs

- Input: Retinal fundus photographs

- Output: Binary classification of referable
diabetic retinopathy (y in {0,1})

- Defined as moderate and worse
diabetic retinopathy, referable diabetic
macular edema, or both

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

- Dataset:
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Graders provided finer-grained

labels which were then
GUIShan et al 201 6 caobneszlidatcéd inetoe(eaesier) binary
- Dataset: / prediction problems
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
25 -

20

16.4

15

10

5
2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)
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Deeper Networks

152 layers| |152 layers

152 layers

\

11.7 |19 layers| |22 layers|

8 layers

\

7.3 67

2013 2014 2014

Zeiler & Simonyan &  Szegedy et al
Fergus Zisserman (VGG) (GooglLeNet)

Ak
3.6 3
2015 2016
He et al Shao et al
(ResNet)
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5.1
2.3
2017 Human
Hu et al Russakovsky et al

(SENet)
Slide credit: CS231n

Lecture 3 - 19




VGGNet

Softmax FC 4096
[Simonyan and Zisserman, 2014] FC 1000 FCa0%
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

Small filters, Deeper networks

3x3 conv, 512 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
3x3 conv, 512
3x3 conv, 512

Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

8 layers (AlexNet) ___
-> 16 - 19 layers (VGG 16Net) T

FC 4096
FC 4096

3x3 conv, 512

l |
| ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
l ]
| 3x3conv, 512 |
l ]
l ]
l ]
| ]
l ]
l ]
l ]
l ]
l ]
l ]

Pool Pool
3x3 conv, 256

3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2 56 o o5

3x3 conv, 384

Pool Pool
3x3 conv, 128

3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

Pool Pool
5x5 conv, 256 3x3 conv, 64 3x3 conv, 64
11x11 conv, 96 3x3 conv, 64 3x3 conv, 64
Input Input Input

AlexNet VGG16 VGG19

Slide credit: CS231n
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GooglLeNet

[Szegedy et al., 2014]

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Filter
concatenation
XC Ix1
convolution

? 4

3x3 max
pooling

Previous Layer

Inception module

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 21



GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers using
a global averaging layer e

- 12x less params than AlexNet

Inception module

Slide credit: CS231n L
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GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers using
a global averaging layer e

- 12x less params than AlexNet

Inception module

Also called “Inception Network”

Slide credit: CS231n L
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Graders provided finer-grained

labels which were then
GUIShan et al 201 6 caobneszlidatcéd inetoe(eaesier) binary
- Dataset: / prediction problems
- 128,175 images, each graded by 3-7
ophthalmologists.
- 54 total graders, each paid to grade between
20 to 62508 images.
- Data preprocessing:
- Circular mask of each image was detected
and rescaled to be 299 pixels wide
- Model:
- Inception-v3 CNN, with ImageNet pre-training
- Multiple BCE losses corresponding to different
binary prediction problems, which were then
used for final determination of referable

. . . Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
dlabetIC retanpathy Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 24



Gulshan et al. 2016

EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

- Results: 100)
- Evaluated using ROC curves, | ¢ el
ege s epr s 1000
AUC, sensitivity and specificity 5
. High-sensitivity operating point
analysis ] 91
& : 904 High-specificity operating point
E -
4 40
"«.:2 80
20 75r'
701 :
0 5 10 15 20 25 30
0_
(I) 2b 4I0 66 SIO 160

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

1 - Specificity, %
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E EyePACS-1: AUC, 99.1%; 95% Cl, 98.8%-99.3%

1007
ooy e Looked at different operating points
80- o High-sensitivity operating point - High-specificity point
approximated ophthalmologist
. 60 o e epecfcltyoperating ot specificity for comparison. Should
g o also use high-specificity to make
gl decisions about high-risk actions.
| 80 - High-sensitivity point should be
] AUC = 0.991 used for screening applications.
20 5
7016 5 10 15 2|0 25 30
"
0 20 40 60 80 100
1 - Specificity, % Gulshan, et al. Development and Validation of a Deep Learning Algorithm for

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Gulshan et al. 2016

E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
) . . ° ° @ O
0~ . x
2 90 Z 90
:E e = Tuning set
2 80 2 g0
& ° A
3 ®
> 70 S 70
" ®
> o >
T 60+ 5 604
= e
[} ‘o
[« (]
2 50 & 50
E A
- i =
% 40 ° %: 40+
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 T T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Q: What could explain the difference in
Gulshan et al. 2016 trends for reducing # grades / image on

training set vs. tuning set, on tuning set

performance?
E] Image sampling Grade sampling
110 - Training set
L ® ® 1001 @——
] ° o ° ° L 4 @
Q. . x
_é' 901 d;‘. 90
:E e = Tuning set
2 80 2 g0
A ° &
X X
> 70 S 70
" ®
> )
£ 60 £ 60-
= e
o [
2 50+ & 50+
E A
- - —
k- 401 o % 40
o o
30 T T T T T T T T T T T T T T T T T T T T T 1 30 - T T T T T T 1
0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45

No. of Images in Data Set (in Thousands) No. of Grades per Image, Mean

Gulshan, et al. Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 2016.
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Considering multiple possible sources of data

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and
test sets
- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model
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Considering multiple possible sources of data

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and

test sets
- Need to see these during training to learn how to handle them

- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible
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Considering multiple possible sources of data

E.g., some with noisier / less accurate labels than others, from different hospital sites, etc.

- Expected diversity of data during deployment should be reflected in both training and
test sets
- Need to see these during training to learn how to handle them
- Need to see these during testing to accurately evaluate the model

- Want test set labels to be as accurate as possible

- Noisy labels is often still useful during training -- can provide useful signal in aggregate.
Much larger amount, but noisy, data is *sometimes™* better than small but clean data.
- “Weakly supervised learning” is a major area of research focused on learning with
large amounts of noisy or imprecise labels
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Preview: advanced approaches for handling limited labeled data

e Semi-supervised learning
e Self-supervised learning
e \Weakly supervised learning

Will talk more about these in later lectures...
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Esteva et al. 2017

Melanocytic lesions Melanocytic lesions (dermoscopy)

- Two binary classification tasks: malignant
vs. benign lesions of epidermal or
melanocytic origin

- Inception-v3 (GoogLeNet) CNN with
ImageNet pre-training

- Fine-tuned on dataset of 129,450 lesions
(from several sources) comprising 2,032
diseases

- Evaluated model vs. 21 or more
dermatologists in various settings

Epidermal lesions

-
[ =4
©
[ —4
k=
©
=

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Train on finer-grained classification (757 classes) but perform binary classification at
inference time by summing probabilities of fine-grained sub-classes

- The stronger fine-grained supervision during the training stage improves inference
performance!

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

@ Acral-lentiginous melanoma i
@® Amelanotic melanoma —4® 92% malignant melanocytic lesion
® Lentigo melanoma

i ! : - f\ f\ @
o - b = s W S Y a
e \gyA D A A A AW \ i %
BO0000% Cprpy: MH onmys s 197909 8o 10 o 191 g 19 07 000018 M s @
' i ! v\ | '@ Blue nevus

@ Halo nevus —&— 8% benign melanocytic lesion
= Convolution @® Mongolian spot
= AvgPool o ..
= MaxPool \&;
= Concat
= Dropout
= Fully connected
= Softmax

Esteva®, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 2017.
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Esteva et al. 2017

- Evaluation of algorithm vs.
dermatologists

Specificity

Specificity

0

Carcinoma: 135 images

== Algorithm: AUC = 0.96
® Dermatologists (25)
@ Average dermatologist

Sensitivity

Carcinoma: 707 images

== Algorithm: AUC = 0.96

0
Sensitivity

Esteva*, Kuprel*, et al. Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 2017.
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Specificity

Specificity

Melanoma: 130 images

== Algorithm: AUC = 0.94
® Dermatologists (22)
@ Average dermatologist

Sensitivity

Melanoma: 225 images

== Algorithm: AUC = 0.96

0 1

Sensitivity

BIODS 220: Al in Healthcare

1

Specificity

Melanoma: 111 dermoscopy images

== Algorithm: AUC = 0.91
® Dermatologists (21)
@ Average dermatologist

Sensitivity

Melanoma: 1,010 dermoscopy image:

Specificity

o

== Algorithm: AUC = 0.94

0 1
Sensitivity
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation* Pretrained with Augmentation*
AlexNet 0.90 (0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GooglLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 and underwent
base data augmentation of random 227x227 cropping and
mirror images. Additional data augmentation experiments in
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 37




Lakhani and Sundaram 2017

Binary classification of pulmonary tuberculosis from x-rays

Four de-identified datasets

1007 chest x-rays (68% train, 17.1% validation, 14.9% test)

Tried training CNNs from scratch as well as fine-tuning from ImageNet

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation® Pretrained with Augmentation*
AlexNet 0.90 {0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81,0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

All training images were resized to 256x256 ard-underwent  fen resize to match input size of
base data augmentation of random 227x227 cropping and pre-trained networks. Also fine approach to

mirror images. Additional data augmentation experiments in making high-res dataset easier to work with!
results table.

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017
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0.8
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1

0

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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Lakhani and Sundaram 2017

1.0

0.8

0.6

Sensitivity

0.4

0.2

| SN S LI S (L N S (L L S (LS AL A |

-
t—

= AlexNet-U
= GooglLeNet-U
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PTG Y

1

o

Lakhani and Sundaram. Deep learning at chest radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017.
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0.8

1.0

Sensitivity

o
FS

1.0

0.8

o
o

0.2

Performed further analysis at optimal
threshold determined by the Youden

Index.
I = AlexNet-TA
i = GoogleNet -TA
- = Ensemble
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Rajpurkar et al. 2017

- Binary classification of pneumonia
presence in chest X-rays

- Used ChestX-ray14 dataset with over ::r:\[e);tx-Raylmage
100,000 frontal X-ray images with 14 CheXNet
diseases 121-layer CNN

- 121-layer DenseNet CNN I?ngzﬂgrt\ia Positive (85%)

- Compared algorithm performance with 4
radiologists

- Also applied algorithm to other diseases to
surpass previous state-of-the-art on
ChestX-ray14

Rajpurkar et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest
X-Rays with Deep Learning. 2017.
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McKinney et al. 2020

- Binary classification of breast cancer in mammograms
- Used an ensemble of models including ResNets
- International dataset and evaluation, across UK and US

Test datasets Ground-truth determination
i':- é Positive if biopsy-confirmed
within T + 3 months Otherwise, negative if a second exam
Number of women 25,856 3,097 occurred after T— A
Interpretation Double reading Single reading
Screening interval 3 years 1or2years 0 g 2T
Index exam
Cancer follow-up 39 months 27 months Last available data
Number of cancers 414 (1.6%) 686 (22.2%) Screening interval (T)
Evaluation
Comparison with retrospective Generalization Independently conducted
clinical performance across datasets reader study
R1
Al system read < R2
1 19 é R3
- R4
S Trained on Tested on RS
Clinician read UK training set US test set R6
UK and 6 radiologists read 500 cases
US test sets from US test set

McKinney et al. International evaluation of an Al system for breast cancer screening. Nature, 2020.
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
“Revolution of Depth”

30 282
152 layers| |152 layers| |152 layers
25
Ao Ao A
20
16.4
15
19 layers| (22 layers,
10 7
7.3 6.7
5 3.6 =
i, = B a s B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan &  Szegedy et a| He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet (ResNet) (SENet)

Slide credit: CS231n
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oftma

ResNet

[He et al., 2015] X3 conv, 64

|

i

Very deep networks using residual
connections

X3 conv, 64
3x3 conv, 64
——

- 152-layer model for ImageNet X

identity %)

X3 conv, 128
—

- Won all major classification and
detection benchmark challenges in 4

2015

Residual block

3x3 conv, 64

___3x3conv. 64 |
—

| Pool |
/x7.conv, 64 /2

Slide credit: CS231n
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
% 56-layer .
> o
= (0]
£ 3 20-layer
@ o}
= [
20-layer
lterations lterations

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]

Slide credit: CS231n
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
% 56-layer .
> o
= (0]
£ 3 20-layer
@ o}
= [
20-layer
lterations lterations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Slide credit: CS231n
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ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

Slide credit: CS231n
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ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned

layers over from the shallower model and setting
all additional layers to the identity function.

Slide credit: CS231n
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ResNet

[He et al., 2015]

Solution: Structure each network layer to fit a “residual function” with respect to the
identity function, then add the two functions together

H(x)

|

conv

relu

conv

T

X
“Plain” layers

T relu
F(x) + x

conv

Fx) relu ide)rftity

conv

X
Residual block

Slide credit: CS231n

Serena Yeung
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ResNet =

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

3Xx3 conv

A

F(x) relu

X
identity

O
3x3 conv, 128
3x3 conv, 128, / 2
O

3Xx3 conv

X
Residual block
| Pool |
TV

Slide credit: CS231n
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ResNet

[He et al., 2015]

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

- Periodically, double # of 3x3 conv 53 comy. 128
filters and downsample F(x) relu X flters, /2
spatially using stride 2 Identity ‘ Spatialy win

. . . 3x3 conv iﬁfnovn:z;zf 2 stride 2
(/2 in each dimension) —
3x3 conv, 64
filters

X
Residual block
| Pool |
TV

Slide credit: CS231n
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ResNet i

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers
- Periodically, double # of 3x3 conv
filters and downsample F(x) Irelu
spatially using stride 2
(/2 in each dimension)
- Additional conv layer at
the beginning X
Residual block

X
identity

O
3x3 conv, 128
3x3 conv, 128, / 2

O
| 3x3conv. 64 | .
O
3x3 conv, 64
| 3x3conv. 64 |
O

3Xx3 conv

I —
Beginning
o conv layer

Slide credit: CS231n
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CEEi0 Je——
R e S N et | Pool | 'l;lgs::di Slalzlce:rs
[He et al., 2015] ? 1000 to

output
classes

3x3 conv, 512
3x3 cony, 512

3x3 conv, 512
3x3 conv, 512

3x3 cony, 512
3x3 conv, 512, /2

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

- Periodically, double # of 3x3 conv
filters and downsample F(x) Irelu X
spatially using stride 2 Identity ——
(/2 in each dimension) oo ——
- Additional conv layer at m;.
the beginning X
- No FC layers at the end Residual block e
(only FC 1000 to output _ = =
classes) ]

C o]

Slide credit: CS231n
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ResNet

[He et al., 2015] .

Total depths of 34, 50, 101, or
152 layers for ImageNet

3x3 conv, 64 .

O

/x7.conv, 64, /2

Slide credit: CS231n
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McKinney et al. 2020

- Binary classification of breast cancer in mammograms
- Used an ensemble of models including ResNets
- International dataset and evaluation, across UK and US

Test datasets Ground-truth determination
i':- é Positive if biopsy-confirmed
within T + 3 months Otherwise, negative if a second exam
Number of women 25,856 3,097 occurred after T— A
Interpretation Double reading Single reading
Screening interval 3 years 1or2years 0 g 2T
Index exam
Cancer follow-up 39 months 27 months Last available data
Number of cancers 414 (1.6%) 686 (22.2%) Screening interval (T)
Evaluation
Comparison with retrospective Generalization Independently conducted
clinical performance across datasets reader study
R1
Al system read < R2
1 19 é R3
- R4
S Trained on Tested on RS
Clinician read UK training set US test set R6
UK and 6 radiologists read 500 cases
US test sets from US test set

McKinney et al. International evaluation of an Al system for breast cancer screening. Nature, 2020.
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More recent CNN architectures

e MobileNet (Sandler et al. 2018) - e EfficientNet (Tan et al. 2020) - family of
architecture with separable architectures designed using “compound
convolutions for light-weight CNNs scaling” that simultaneously scale width,

depth, and resolution of neural networks with

NASNet (Zoph l. 201
° SNet (Zoph et al. 2016) and 2 fixed ratio

AmoebaNet (Real et al. 2019) - u —
. . AmoebaNet-A _ = ===="" -
architectures discovered through Lo NasNetA ..o SN
;\?82 2T e e
1] H ” H = | B3 @ L e
neural architecture search” via 5 L
. . . 3 %0 PN A
oot ption-ResNet-v2
reinforcement learning or evolutionary g
a ¢ :Xception
algorithms Ew 0 ; ResNet 152 T
§ | & Densenerao e | (e O
g_(_ [ . ResNeXe-101 (Xie et al, 2017)| 50.9% 8aM
[ . EfficientNet-B3 81.6% 12M
= 'l o ResNet-50 SENe( (62l 2078) $27%  146M
e TS b
74 1 Inception-v2 GPipe (Huang et al., 2018) T 84',3% 556M
EfficientNet-B7 84.3% 66M
NASN?:AN i 'Nfu :Iuneed
esiNet-,
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)
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More recent CNN architectures Worth exploring for class

projects!
e MobileNet (Sandler et al. 2018) - e EfficientNet (Tan et al. 2020) - family of
architecture with separable architectures designed using “compound
convolutions for light-weight CNNs scaling” that simultaneously scale width,

depth, and resolution of neural networks with

NASNet (Zoph l. 201
° SNet (Zoph et al. 2016) and 2 fixed ratio

AmoebaNet (Real et al. 2019) - u —
. . AmoebaNetA _ - = ===" -
architectures discovered through Lo NasNetA ..o SN
113 H 11 H ESQ T e
neural architecture search” via 5 L
. . . 3 %0 PN A
oot ption-ResNet-v2
reinforcement learning or evolutionary g
a ¢ :Xception
. O - .
algorithms Ew 0 ; ResNet 152 T
S Bb ‘DenseNet-201 ResNet-152 (He etal,, 2016) | 77.8% 60M
. EfficientNet-B1 79.1% 7.8M
Bl |7 o e B O
. ) et- o
= | - ResNet-50 SENet (Fu et . 2075 $27%  146M
e TS b
74 1 Inception-v2 GPipe (Huang et al., 2018) T 84',3% 556M
EfficientNet-B7 84.3% 66M
NASN?:AN i iNfu :Iuneed
esiNet-,
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)
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More recent CNN architectures Worth exploring for class

projects!
e MobileNet (Sandler et al. 2018) - e EfficientNet (Tan et al. 2020) - family of
architecture with separable architectures designed using “compound
convolutions for light-weight CNNs scaling” that simultaneously scale width,

depth, and resolution of neural networks with

NASNet (Zoph l. 201
° SNet (Zoph et al. 2016) and 2 fixed ratio

AmoebaNet (Real et al. 2019) - s Aot

architectures discovered through . ,,,iizifﬁf f____.—.._—:_'s_ENe.

“neural architecture search” via 3 _..,F{e-s-,'q;);;_;;

reinforcement learning or evolutionary ‘—?:80 ,/.'x;‘;;"'.Tn‘cepmeSNM

algorithms 1A b " e P35

Preview: Transformers, a new class of deep LU PR i
learning architecture, was originally designed for ) ,; eion. :.,e‘“ B
NLP/sequence data but has recently also been b hetase S |
applied for computer vision tasks. Stay tuned! Sl e
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Advanced Vision Models:
Segmentation and Detection
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Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image

Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 60


https://arxiv.org/pdf/1604.02677.pdf

Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixel Spatial bounding box for  Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image \ /
Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf Distinguishes between different instances of an object
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: output
Image || T g
g ol bl bl segmentation
tile S &l 2
3 &l 3 map
N| Of @© x| ] > x|
N K o g &
x x x
| Of @©
| B8
' 128 128
256 128
o o~ o o
S E o Tea
' 256 256 t

o
Ol
o
—

3 = copy and cro
512 512 1024 512 t Py P
‘ ¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

512 256
I > 3 1 ’I =»conv 3x3, ReLU
i

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Output is an image

64 64 mask: width x height x
128 64 64 2 # classes
input
i output
im >> . .
at%: bl il o segmentation
gl o & 8 map
N| Of @© x| ] ] x|
A E
x x x
| Of @©
| B8
' 128 128
256 128
= B 8“2 3
' 256 256 t

o

f S 2 = copy and crop
¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

512 512 1024 512

512 256
I ¥ W ’I =»conv 3x3, RelLU
S L=

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: output
image |s|» ;
J *1*|*| segmentation
e N EEE
Sl &f & &8 map
X ] > x|
N R il off of o
Gl o o | e
| Of ©
P
' 128 128
256 128
SIS =
N N ~N
¥ oo o 512 256 t
A b et g [ =»conv 3x3, ReLU
N B K Ei o= 8 d
Ty 8 & - copy and cro
512 512 1024 ' py p
wI»I»I E-—-—- ¥ max pool 2x2
S ¥ 102 4o 4 up-conv 2x2
e >
. :%J_ A = conv 1x1
N

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Output is an image
mask: width x height x
# classes

Output image size somewhat
smaller than original, due to
convolutional operations w/o
padding

Lecture 3 - 64




SemantIC Segmentat|0n U'Net Output is an image

i mask: width x height x
128 64 64 2 # Classes
R output , ,
bl =1 |*] segmentation Output image size somewhat
gl o o 5 map smaller than original, due to
5515 2l o &8 convolutional operations w/o
BIGIR padding
' 128 128
¥ oo o 512 256 t
2 M Sl 1 =»conv 3x3, ReLU
Rk "B i = Lo ' = 4 copy and crop
wl".’. E,*-*- ¥ max pool 2x2 Gives more “true” context for
%‘,%,_ _: e reasoning over each image area.
. : Can tile to make predictions for
Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. arbitrarily Iarge images
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Semantic segmentation: U-Net

64 64
128 64 64 2
_Inpit output
|mat?|g i i “ _I*"I*]*| segmentation
A8 me
Max pooling &g §
enables T~ § ..,
aggregation of 286 128
increasingly
more context 1.1. MEE
(higher level I H E Tk
features) ¥ o6 256 t
Il 4

S 8 = copy and cro
512 512 1024 512 1 py p

>

512 256
I % > ’I =»conv 3x3, ReLU
i

o
=]
=]

562

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

662 i
i

‘ 53 &
1024 i i
- [ v [

o

(2]

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

G & A few conv
layers at 128 64 64 2
every
input / resolution
: e e R output
Imat?lg e / A 6l : : segmentation
g 4 & map
' 128 128
256 128
HE E %ﬂélgl
' 256 256 t

138:W
1362 ¥

1402

N Ol
o o

f S S = copy and crop
¥ max pool 2x2
4 up-conv 2x2

=» conv 1x1

512 512 1024 512
>

512 256
I % > ’I =»conv 3x3, ReLU
i

o
=]
=]

662 i
i

562

o~ o
< o
w wn

1024 ‘

D S —
o
™

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
: e e R output
|matgi;|2 e A * : : segmentation
- gl o g & map
~l ol s Highest-level features EERE
KEE encoding large spatial 2l & & &
5| o] & context
¥ 128 128 \
256 128
B E 3 élgl

=i = copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

' 256 256 o e t
I I I [I’I’OI =>conv 3x3, ReLU
i t

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

64 64
128 64 64 2
input
- wla output
|matgi;|§ il 3 Gl ‘: ': segmentation
gl A g g map
552 gl o 4 & Up-convolutions to go from
5518 the global information
¥ 125 128 < encoded in highest-level
features, back to individual
pixel predictions

' 256 256

=»conv 3x3, ReLU
= copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

Recall: Normal 3 x 3 convolution, stride 2 pad 1

- Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2
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Up-convolutions

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

3 x 3 up-convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

3 x 3 up-convolution, stride 2 pad 1

- Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

Sum where

3 x 3 up-convolution, stride 2 pad 1 output overlaps

- Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Up-convolutions

. - Sum where
Other names: 3 x 3 up-convolution, stride 2 pad 1 output overlaps
-Transpose
convolution
-Fractionally strided
convolution
-Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4
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Semantic segmentation: U-Net

Concatenate with
64 64

same-resolution feature map
during downsampling
process to combine

128 64 64 2

input

. > 4 high-level information with
'matfiilg i e . tation low-level (local) information

392 x 392
388 x 388 '

572 x 572
570 x 570
568 x 568

' 128 128

2842
2822
2802

' 256 256

=»conv 3x3, ReLU
=i = copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Train with classification loss

64 61 (e.g. binary cross entropy)
128 64 64 2 on every pixel, sum over all
pixels to get total loss
input
i P P output
|matgi;|g il | Gl ‘: ': segmentation
al g 4 § map
' 128 128
256 128
slall s %ﬂglgl
' 256 256 512 256 t
& ‘?,OI'EI ?Izl =»conv 3x3, ReLU
.3 9’ S S = copy and crop
[ | ¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & P

target U prediction

\ Total # pixels in the

union of both masks
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Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & p

target U prediction

\ Total # pixels in the

union of both masks
Can compute this over all masks in the

evaluation set, or at individual mask and image
levels to get finer-grained understanding of
performance.

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 81



Semantic segmentation: 10U evaluation

# pixels included in both

Intersection over Union: target and prediction
maps

target N prediction
loU = & p

target U prediction

\ Total # pixels in the

union of both masks
Can compute this over all masks in the

evaluation set, or at individual mask and image

levels to get finer-grained understanding of
performance. Also known as Jaccard

Index
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Semantic segmentation: Pixel Accuracy evaluation

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels

\ Total pixels

in image
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels

Pixel Accuracy (PA) = # total pixels

\ Total pixels

Q: What is a potential in image
problem with this?
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Semantic segmentation: Pixel Accuracy evaluation

TP+ TN

/

# correctly classified pixels
# total pixels

\ Total pixels

Q: What is a potential in image
problem with this?

Pixel Accuracy (PA) =

A: Think about what
happens when there is class
imbalance.
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Semantic segmentation: Dice coefficient evaluation

2 * (target N prediction)

Dice Coefficient =
16 LoeTeen # target mask pixels + # prediction mask pixels
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Semantic segmentation: Dice coefficient evaluation

2 * intersection

~

2 * (target N prediction)

Dice Coefficient =
16 Locteien # target mask pixels + # prediction mask pixels

Sum of target mask size
+ prediction mask size

Very similar to 10U /
Jaccard, can derive one
from the other
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Semantic segmentation: summary of evaluation
metrics

e Most commonly use IOU / Jaccard or Dice Coefficient

Sometimes will also see pixel accuracy
If multi-class segmentation task, typically report all these metrics per-class,

and then a mean over all classes

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 89



Semantic segmentation: U-Net cell segmentation

Name

PhC-U373 DIC-HeLa

IMCB-SG (2014)
KTH-SE (2014)
HOUS-US (2014)
second-best 2015
u-net (2015)

0.2669 0.2935
0.7953 0.4607
0.5323 -

0.83 0.46
0.9203 0.7756

Very small dataset: 30 training images of size 512x512,
in the ISBI 2012 Electron Microscopy (EM) segmentation
challenge. Used excessive data augmentation to

compensate.

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Aside: segmentation through sliding-window pixel classification

Image patch: input to
classification network

[ Deep Neural Network )

Ees

Y DNN output

g D

.

Classification
output is
prediction for the
center pixel of
the patch Original Image —— )~ Pr(p = membrane)

Calibration

Note: a simple approach to segmentation can also be applying a classification CNN on image
patches in a dense, sliding-window fashion (e.g. Ciresan et al.). But fully convolutional
approaches such as U-Net generally achieve better performance.

Ciresan et al. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. NeurlPS, 2012.
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Novikov et al. 2018

- Chest x-ray segmentation of lungs, clavicles, and heart

- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But
downsampled to 128x128 and 256x256!)

- Used a U-Net based segmentation network with a few modifications

,’ .’
~— =t
High Level
Features
Part I: Contraction Part II: Expansion
Input Image Segmented Image

Segmentation Network

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Q: What loss function

Novikov et al. 2018 would be appropriate

here?

- Chest x-ray segmentation of lungs, clavicles, and heart

- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But
downsampled to 128x128 and 256x256!)

- Used a U-Net based segmentation network with a few modifications

,’ .’
~— =t
High Level
Features
Part I: Contraction Part II: Expansion
Input Image Segmented Image

Segmentation Network

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Novikov et al. 2018

- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss
based on the Dice coefficient.

- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart
Evaluation Metric D J D J D J
InvertedNet 0.972 | 0.946 | 0902 | 0.821 | 0.935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Image ground truth class mask .
. I v, 4) = 1 2 Zi,j Yi,iYi,j
di ) = - ~
NOVIkOV et al . 201 8 e % Zi,j Yij + Zi,j Yi,j
Image pixel class probabilities
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss

based on the Dice coefficient.  Note: this Dice loss is often useful to try!
- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart
Evaluation Metric D J D J D J
InvertedNet 0972 | 0.946 | 0902 | 0.821 | 0935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Image ground truth class mask .
. I v, 4) = 1 2 Zi,j Yi,iYi,j
di ) = - ~
NOVIkOV et al . 201 8 e % Zi,j Yij + Zi,j Yi,j
Image pixel class probabilities
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss

based on the Dice coefficient.  Note: this Dice loss is often useful to try!
- Class imbalance -> weight loss terms corresponding to each ground-truth class
by inverse of class frequency: (# class pixels) / (total # pixels in data)

Body Part Lungs Clavicles Heart __— Dice and
4 = ] Jaccard
Evaluation Metric D " 4 D i ¥ 5, J evaluation
InvertedNet 0972 | 0946 | 0.902 | 0.821 | 0.935 | 0.879

All-Dropout 0973 | 0948 | 0.896 | 0.812 | 0.941 | 0.888
All-Convolutional | 0971 | 0.944 | 0.876 | 0.780 | 0.938 | 0.883
Original U-Net 0971 | 0944 | 0.880 [ 0.785 | 0.938 | 0.883

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Dong et al. 2017

- Segmentation of tumors in brain MR image slices
-  BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRlIs
- U-Net architecture, Dice loss function

Ground Truth Segmentation Original Ground Truth Segmentation

0y o

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.

Serena Yeung BIODS 220: Al in Healthcare Lecture 3 - 97



Other segmentation architectures

Fully convolutional networks (FCN)
Pre-cursor to U-Net, similar in
structure but simpler upsampling
pathway

32x upsampled

image convl pooll conv2 pool2 conv3 pool3 conv4 poold convd pool5 conv6-7  prediction (FCN-32s)

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic
Segmentation. CVPR 2015.

2x conv7 16x upsampled
—_— T prediction (FCN-16s)
- .

8x upsampled
4x conv? prediction (FCN-8s)

2x poold [

pool3 [

R
-

DeepLab (v1-v3)

Uses “atrous convolutions” to control a
filter’s field of view

Parallel atrous convolutions with
different rates for multi-scale features

rate = 18 rate = 24

s —
rate = 6 rate = 12 -—

it

O
omEOd [ = 0 = 5] O

o

B _F
00
b I
. B caat

Atrous Spatial Pyramid Pooling

Input Feature Map

|

Chen et al. DeeplLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917.
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https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Other segmentation architectures

Fully convolutional networks (FCN)
Pre-cursor to U-Net, similar in
structure but simpler upsampling
pathway

32x upsampled

image convl pooll conv2 pool2 conv3 pool3 conv4 poold convd pool5 conv6-7  prediction (FCN-32s)

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic
Segmentation. CVPR 2015.

2x conv7 16x upsampled
—_— T prediction (FCN-16s)
- .

8x upsampled
4x conv? prediction (FCN-8s)

2x poold [

pool3 [

R
-

Can try DeeplLab v3+
for segmentation
/ projects!
DeepLab (v1-v3+)
Uses “atrous convolutions” to control a
filter’s field of view

Parallel atrous convolutions with
different rates for multi-scale features

rate = 18 rate = 24

s —
rate = 6 rate = 12 -—

it

O
omEOd [ = 0 = 5] O

o

B _F
00
b I
. B caat

Atrous Spatial Pyramid Pooling

Input Feature Map

|

Chen et al. DeeplLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917.
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Richer visual recognition tasks: segmentation and detection

Semantic Instance

Classification

Detection

Segmentation Segmentation

Output: Output: Output: Output:
one category label for category label for each pixe| Spatial bounding box for Category label and instance
image (e.g., colorectal in the image each instance of a label for each pixel in the
glands) category object in the image
image

Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf
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Richer visual recognition tasks: segmentation and detection

Semantic
Segmentation

Classification

r : i

. A i
“' \ y q S

.’g\ j.’j*) ’."i
N

Output: Output:

one category label for category label for each pixe
image (e.g., colorectal in the image

glands)

Figures: Chen et al. 2016. https://arxiv.ora/pdf/1604.02677.pdf

BIODS 220: Al in Healthcare

Next Time:

Instance
Segmentation

Detection

Output:
Spatial bounding box for
each instance of a
category object in the

image \ /

Distinguishes between different instances of an object

Output:
Category label and instance
label for each pixel in the
image
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https://arxiv.org/pdf/1604.02677.pdf

Summary
Finished up medical image classification
Beyond classification to richer visual recognition tasks

- Semantic segmentation

Next time: Advanced vision models (Object detection, Instance segmentation, 3D
and video)
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