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Lecture 4:
Medical Images: 

Segmentation and Detection (Part 2),
3D and Video



2Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Announcements
- A1 released, due Tue 10/18
- Project proposal due Fri 10/21 – Project suggestions list on Ed (#35)
- Tensorflow review sesion this Friday, 10/7, Alway M106 at 1:30pm
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Note on “Deep Learning Fundamentals” review session
What you are expected to know for the class:

- Definition and conceptual understanding of how the main components of different types of 
neural networks work

- Framework of training a deep learning model
- Conceptual understanding and trade-offs among design choices
- Good practices and techniques for effectively developing deep learning models for different 

biomedical tasks

What is not expected:
- Remembering / deriving complicated mathematical derivations of gradients, backpropagation, 

specific optimization methods (Adam, etc.), learning rate schedulers, etc.
- Mathematical details of design choices such as batch normalization, dropout (scaling), etc. 

Instead you are expected to understand them conceptually, understand trade-offs, and 
understand how to make good choices about using them
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Note on course lectures 

- Objective is to establish strong conceptual foundation for developing AI 
models in healthcare

- Assignments represent what you should be able to implement and know “in 
detail” from this class

- Lectures teach what you need to know for assignments, but may sometimes 
go a bit deeper. Goal is to give conceptual grounding such that you can refer 
back and have the foundation to explore independently in areas that you 
choose to dive further (e.g. for your class project or other future projects!)
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Last Time:
Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes

Output image size somewhat 
smaller than original, due to 
convolutional operations w/o 
padding
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Output is an image 
mask: width x height x 
# classes

Output image size somewhat 
smaller than original, due to 
convolutional operations w/o 
padding

Gives more “true” context for 
reasoning over each image area. 
Can tile to make predictions for 
arbitrarily large images
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Max pooling 
enables 
aggregation of 
increasingly 
more context 
(higher level 
features)
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

A few conv 
layers at 
every 
resolution
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Highest-level features 
encoding large spatial 
context
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Up-convolutions to go from 
the global information 
encoded in highest-level 
features, back to individual 
pixel predictions
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Input: 4 x 4 Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Up-convolutions
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3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 up-convolution, stride 2 pad 1

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Up-convolutions
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 up-convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Transpose 
convolution
-Fractionally strided 
convolution
-Backward strided 
convolution

Up-convolutions
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Concatenate with 
same-resolution feature map 
during downsampling 
process to combine 
high-level information with 
low-level (local) information
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Semantic segmentation: U-Net

Ronneberger et al. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Train with classification loss 
(e.g. binary cross entropy) 
on every pixel, sum over all 
pixels to get total loss
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Semantic segmentation: IOU evaluation

Intersection over Union:
# pixels included in both 
target and prediction 
maps

Total # pixels in the 
union of both masks

Can compute this over all masks in the 
evaluation set, or at individual mask and image 
levels to get finer-grained understanding of 
performance. Also known as Jaccard 

Index
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Semantic segmentation: Pixel Accuracy evaluation

TP + TN

Total pixels 
in imageQ: What is a potential 

problem with this?

A: Think about what 
happens when there is class 
imbalance.
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Semantic segmentation: Dice coefficient evaluation

2 * intersection

Sum of target mask size 
+ prediction mask size

Very similar to IOU / 
Jaccard, can derive one 
from the other
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Semantic segmentation: summary of evaluation 
metrics

● Most commonly use IOU / Jaccard or Dice Coefficient
● Sometimes will also see pixel accuracy
● If multi-class segmentation task, typically report all these metrics per-class, 

and then a mean over all classes
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Semantic segmentation: U-Net cell segmentation

Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

Very small dataset: 30 training images of size 512x512, 
in the ISBI 2012 Electron Microscopy (EM) segmentation 
challenge. Used excessive data augmentation to 
compensate.
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Aside: segmentation through sliding-window pixel classification 

Ciresan et al. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. NeurIPS, 2012.

Note: a simple approach to segmentation can also be applying a classification CNN on image 
patches in a dense, sliding-window fashion (e.g. Ciresan et al.). But fully convolutional 
approaches such as U-Net generally achieve better performance.

Image patch: input to 
classification network

Classification 
output is 
prediction for the 
center pixel of 
the patch



31Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Novikov et al. 2018
- Chest x-ray segmentation of lungs, clavicles, and heart
- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But 

downsampled to 128x128 and 256x256!)
- Used a U-Net based segmentation network with a few modifications

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.
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Novikov et al. 2018
- Chest x-ray segmentation of lungs, clavicles, and heart
- JSRT dataset of 247 chest-xrays at 2048x2048 resolution. (But 

downsampled to 128x128 and 256x256!)
- Used a U-Net based segmentation network with a few modifications

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Q: What loss function 
would be appropriate 
here?
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Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.



34Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Image ground truth class mask

Image pixel class probabilities

Note: this Dice loss is often useful to try!
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Novikov et al. 2018
- Multi-class segmentation -> tried both a per-pixel softmax loss as well as a loss 

based on the Dice coefficient.
- Class imbalance -> weight loss terms corresponding to each ground-truth class 

by inverse of class frequency: (# class pixels) / (total # pixels in data)

Novikov et al. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs. IEEE Trans. on Medical Imaging, 2018.

Dice and 
Jaccard 
evaluation

Image ground truth class mask

Image pixel class probabilities

Note: this Dice loss is often useful to try!
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Dong et al. 2017
- Segmentation of tumors in brain MR image slices
- BRATS 2015 dataset: 220 high-grade brain tumor and 54 low-grade brain tumor MRIs
- U-Net architecture, Dice loss function

Dong et al. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. MIUA, 2017.
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Other segmentation architectures
- Fully convolutional networks (FCN)
- Pre-cursor to U-Net, similar in 

structure but simpler upsampling 
pathway

Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.
Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917. 

- DeepLab (v1-v3)
- Uses “atrous convolutions” to control a 

filter’s field of view
- Parallel atrous convolutions with 

different rates for multi-scale features

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic 
Segmentation. CVPR 2015.

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Other segmentation architectures
- Fully convolutional networks (FCN)
- Pre-cursor to U-Net, similar in 

structure but simpler upsampling 
pathway

Chen et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, 
Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2017.
Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. 2917. 

- DeepLab (v1-v3+)
- Uses “atrous convolutions” to control a 

filter’s field of view
- Parallel atrous convolutions with 

different rates for multi-scale features

Shelhamer*, Long*, et al. Fully Convolutional Networks for Semantic 
Segmentation. CVPR 2015.

Can try DeepLab v3+ 
for segmentation 
projects!

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Continuing today:
Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Object detection: 
Faster R-CNN

CNN backbone (any 
CNN network that 
produces spatial feature 
map outputs)
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Object detection: 
Faster R-CNN

Regress to bounding box “candidates” 
from “anchor boxes” at each location
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Object detection: 
Faster R-CNN

In each of top 
bounding box 
candidate locations, 
crop features within 
box (treat as own 
image) and perform 
further refinement of 
bounding box + 
classification
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Girshick, “Fast R-CNN”, ICCV 2015. Image features

“Snap” to 
grid cells

Divide into grid of (roughly) 
equal subregions, 
corresponding to fixed-size 
input required for final 
classification / bounding box 
regression networks

Max-pool within 
each subregion

Cropping Features: RoI Pool
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs
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Remember: ROC and precision recall curves
- Receiver Operating Characteristic (ROC) 

curve:
- Plots sensitivity and specificity 

(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Figure credit: Gulshan et al. 2016



48Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Remember: ROC and precision recall curves
- Receiver Operating Characteristic (ROC) 

curve:
- Plots sensitivity and specificity 

(specifically, 1 - specificity) as prediction 
threshold is varied

- Gives trade-off between sensitivity and 
specificity

- Also report summary statistic AUC (area 
under the curve)

Plot curve is based on TP, TN, FP, FN when 
varying the prediction threshold -- i.e., class 
confidence threshold

Figure credit: Gulshan et al. 2016
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Remember: ROC and precision recall curves

Ground
Truth

Prediction

0 1

0

1

TN FP

TPFN

Accuracy: (TP + TN) / totalConfusion matrix

Sensitivity / Recall (true positive rate): 
TP / total positives

Specificity (true negative rate): 
TN / total negatives

Precision (positive predictive value): 
TP / total predicted positives

Negative predictive value: 
TN / total predicted negatives
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves

Object detection is typically heavily imbalanced 
(most of the data is background) -> PR curves 
most common evaluation
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- Sometimes also see precision recall 
curve

- More informative when dataset is 
heavily imbalanced (specificity = 
true negative rate less meaningful 
in this case)

Figure credit: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/Precision-Recall-Plot-for-a-No-Skill-Classifier-and-a-Logistic-Regression-Model4.png

Remember: ROC and precision recall curves

Object detection is typically heavily imbalanced 
(most of the data is background) -> PR curves 
most common evaluation

Report AUC per-class. 
Usually called “average 
precision (AP)”. Also 
report average of APs 
over all classes, called 
“mean AP”.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

Obtain from 
model outputs

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)

A: Choose an IOU threshold with ground truth boxes to determine if bounding 
box prediction is TP or FP. Then can plot PR curve and obtain AP metric.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)

A: Choose an IOU threshold with ground truth boxes to determine if bounding 
box prediction is TP or FP. Then can plot PR curve and obtain AP metric.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)

A: Choose an IOU threshold with ground truth boxes to determine if bounding 
box prediction is TP or FP. Then can plot PR curve and obtain AP metric.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.

If IOU threshold not specified 
in experiments description for 
a paper, may need to look in 
dataset evaluation 
documentation. Default is 
often 0.5 or [.5,.95].

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)

A: Choose an IOU threshold with ground truth boxes to determine if bounding 
box prediction is TP or FP. Then can plot PR curve and obtain AP metric.
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Standard output of object detection

For each class, a set of bounding box 
predictions with associated confidences:

- E.g., (x, y, h, w, c)

Evaluation of object detection

Bounding 
box

Class 
confidence

mAP (over all 
classes), with IOU 
threshold of 0.5. 
Often report mAP at 
multiple IOUs.

Average of mAP 
values at IOU 
thresholds regularly 
sampled in the 
interval between 
[.5, .95].

We have the class confidences to vary the threshold in plotting the PR curve. 
But how do we get TP or FP? (note TN,FN, not used for PR curve.)

A: Choose an IOU threshold with ground truth boxes to determine if bounding 
box prediction is TP or FP. Then can plot PR curve and obtain AP metric.

If IOU threshold not specified 
in experiments description for 
a paper, may need to look in 
dataset evaluation 
documentation. Default is 
often 0.5 or [.5,.95].
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Jin et al. 2018
- Detection of surgical instruments in 

surgery videos (in each video frame)

- Surgical instrument movement over the 
course of a video can be used to extract 
metrics such as tool switching, and 
spatial trajectories, that can be used to 
assess and provide feedback on 
operative skill.

- Used M2cai16-tool dataset of 15 surgical 
videos. Annotated 2532 frames with 
bounding boxes of 7 tools.

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. 2018

Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.
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Jin et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. WACV, 2018.

http://www.youtube.com/watch?v=5ZX0KzUkGew
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Other object detection architectures
- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation -> 
region classification two-stage pipeline into a single stage. 

- Faster, but lower performance. Struggles more with class imbalance relative to two-stage 
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight 
harder examples over easy background examples. Able to outperform Faster 
R-CNN on some benchmark tasks, while being more efficient.
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Other object detection architectures
- RCNN, Fast RCNN: older and slower predecessors to Faster-RCNN

- YOLO, SSD: single-stage detectors that change region proposal generation -> 
region classification two-stage pipeline into a single stage. 

- Faster, but lower performance. Struggles more with class imbalance relative to two-stage 
networks that filter only top object candidate boxes for the second stage.

- RetinaNet: single-stage detector that uses a “focal loss” to adaptively weight 
harder examples over easy background examples. Able to outperform Faster 
R-CNN on some benchmark tasks, while being more efficient.

RetinaNet also worth trying 
for object detection projects!
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Richer visual recognition tasks: segmentation and detection

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

Distinguishes between different instances of an object

https://arxiv.org/pdf/1604.02677.pdf
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Instance segmentation:
Mask R-CNN

Mask Prediction

Add a small mask 
network that operates 
on each RoI to predict 
a segmentation mask
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Cropping Features: RoI Align

Image features
(e.g. 512 x 20 x 15)

Sample at regular points 
in each subregion using 
bilinear interpolationNo “snapping”!

Improved version of RoI 
Pool since we now care 
about pixel-level 
segmentation accuracy!
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Cropping Features: RoI Align

Image features

Sample at regular points 
in each subregion using 
bilinear interpolationNo “snapping”!

Feature fxy for point (x, y) 
is a linear combination of 
features at its four 
neighboring grid cells

Improved version of RoI 
Pool since we now care 
about pixel-level 
segmentation accuracy!
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds

AP at specific thresholds (“mean AP” is implicit here)
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Instance segmentation evaluation
- Instance-based task, like object detection

- Also use same precision-recall curve and AP evaluation metrics

- Only difference is that IOU is now a mask IOU

- Same as the IOU for semantic segmentation, but now per-instance

Average AP over different 
IOU thresholds

AP at specific thresholds (“mean AP” is implicit here)

AP for small, 
medium, large 
objects
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Example: instance segmentation of cell nuclei
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Many interesting extensions

Hollandi et al. A deep learning framework for nucleus segmentation using image style transfer. 2019.

- E.g. Hollandi et al. 2019

- Used “style transfer” 
approaches for rich 
data augmentation

- Refined Mask-RCNN 
instance segmentation 
results with further 
U-Net-based boundary 
refinement
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Lung nodule segmentation

Liu et al. Segmentation of Lung Nodule in CT Images Based on Mask R-CNN. 2018.

- E.g. Liu et al. 2018

- Dataset: Lung Nodule Analysis (LUNA) challenge, 888 512x512 CT scans from the 
Lung Image Data Consortium database (LIDC-IDRI).

- Performed 2D instance segmentation in 2D CT slices

We will see other ways 
to handle 3D medical 
data types next 
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Where we are
First topic: medical image classification

Then: Beyond classification to richer visual recognition tasks

- Semantic segmentation (last lecture)
- Object detection (today)
- Instance segmentation (today)

Next topic: Advanced vision models (3D and video)
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Next Topic:
Advanced Vision Models for 

Higher-Dimensional (3D and Video) Data
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How do we handle 3D data?

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.

Recall: Ciompi et al. 2015
- Task: classification of lung nodules in 

3D CT scans as peri-fissural nodules 
(PFN, likely to be benign) or not

- Dataset: 568 nodules from 1729 
scans at a single institution. (65 
typical PFNs, 19 atypical PFNs, 484 
non-PFNs).

- Data pre-processing: prescaling from 
CT hounsfield units (HU) into [0,255]. 
Replicate 3x across R,G,B channels 
to match input dimensions of 
ImageNet-trained CNNs.
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Ciompi et al. 2015
- Also extracted features from a deep learning model trained on ImageNet

- Overfeat feature extractor (similar to AlexNet, but trained using additional losses 
for localization and detection)

- To capture 3D information, extracted features from 3 different 2D views of each 
nodule, then input into 2-stage classifier (independent predictions on each view 
first, then outputs combined into second classifier).

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.
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Ciompi et al. 2015
- Also extracted features from a deep learning model trained on ImageNet

- Overfeat feature extractor (similar to AlexNet, but trained using additional losses 
for localization and detection)

- To capture 3D information, extracted features from 3 different 2D views of each 
nodule, then input into 2-stage classifier (independent predictions on each view 
first, then outputs combined into second classifier).

Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an 
ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis,  2015.

Another approach: 
3D CNNs!
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

Remember 2D convolutions

Slide credit: CS231n
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32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

Remember 2D convolutions

Slide credit: CS231n

Slide filter 
along 2 
directions: 
x and y 
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3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!
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3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!

When might you use 3D 
convolutions?
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3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!

When might you use 3D 
convolutions?

Ex: 224 x 224 x 1 x 256 3D CT 
scan (with 256 slices)
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3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!

When might you use 3D 
convolutions?

Ex: 224 x 224 x 1 x 256 3D CT 
scan (with 256 slices)

Ex: 224 x 224 x 3 x 500 video 
data (with 500 temporal frames)
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3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!

When might you use 3D 
convolutions?

Ex: 224 x 224 x 1 x 256 3D CT 
scan (with 256 slices)

Ex: 224 x 224 x 3 x 500 video 
data (with 500 temporal frames)

x,y,z are spatial and/or temporal 
dimensions. 

x y z



90Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z!

When might you use 3D 
convolutions?

Ex: 224 x 224 x 1 x 256 3D CT 
scan (with 256 slices)

Ex: 224 x 224 x 3 x 500 video 
data (with 500 temporal frames)

x,y,z are spatial and/or temporal 
dimensions. 
Filter (e.g. 5 x 5 x 3 x 10 filter) goes all 
the way through the “channels” 
dimension as before. 

x y z

channels (e.g. 
R,G,B)
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Now: 3D CNNs for lung nodule classification

Figure credit: Ciompi et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural 
network out-of-the-box. Medical Image Analysis,  2015.
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Huang et al. 2017
- Simple 3D CNN for lung nodule classification
- Used image processing approaches to extract candidate nodules, then 3D 

CNN to classify the surrounding volume
- Used the Lung Image Database Consortium (LIDC) Dataset, with 99 3D CT 

scans

Huang et al. Lung Nodule Detection in CT Using 3D Convolutional Neural Networks. ISBI 2017. 
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For richer visual recognition tasks, can also extend respective CNN 
architectures to use 3D convolutions

Figures: Chen et al. 2016. https://arxiv.org/pdf/1604.02677.pdf

Classification

Output: 
one category label for 
image (e.g., colorectal 

glands)

Semantic 
Segmentation

Detection Instance
Segmentation

Output: 
category label for each pixel 

in the image

Output: 
Spatial bounding box for 

each instance of a 
category object in the 

image

Output: 
Category label and instance 

label for each pixel in the 
image

https://arxiv.org/pdf/1604.02677.pdf
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E.g. 3D U-Net

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net Same structure as 2D version, 
just replace all 2D convolutions 
with 3D convolutions

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net
Channels

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net
Ex. input: 132 x 132 x 3 x 116

3D conv filters are:
3 x 3 x channels x 3

Sometimes channels are 
implicit, can refer to as 3 x 3 
x 3 conv filter Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net

3D conv filters are:
3 x 3 x channels x 3

Sometimes channels are 
implicit, can refer to as 3 x 3 
x 3 conv filter

Ex. input: 132 x 132 x 3 x 116

Labor-intensive to 
provide ground truth 3D 
annotation. Train instead 
using sparse 
annotations: a handful of 
annotated xy, xz, yz 2D 
slices. All others are 
“unlabeled” pixels with 
no weight in the loss.

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net

3D conv filters are:
3 x 3 x channels x 3

Sometimes channels are 
implicit, can refer to as 3 x 3 
x 3 conv filter

Ex. input: 132 x 132 x 3 x 116

Labor-intensive to 
provide ground truth 3D 
annotation. Train instead 
using sparse 
annotations: a handful of 
annotated xy, xz, yz 2D 
slices. All others are 
“unlabeled” pixels with 
no weight in the loss.

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.

Semi-supervised learning: learning from datasets that are partially labeled 
(small amount of labeled data + larger amount of unlabelled data). Lots of 
active research on ways (e.g. loss functions which don’t require manual 
labels) to simultaneously learn richer information from the unlabeled data.
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E.g. 3D U-Net
Ex: 3D segmentation of 
Xenopus kidney in confocal 
microscopic data

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net
Ex: 3D segmentation of 
Xenopus kidney in confocal 
microscopic data

Spatial dims: ~ 250 x 250 x 60. 
3 channels: each channel 
corresponds to a different type of 
data capture

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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E.g. 3D U-Net
Ex: 3D segmentation of 
Xenopus kidney in confocal 
microscopic data

Spatial dims: ~ 250 x 250 x 60. 
3 channels: each channel 
corresponds to a different type of 
data capture

Used only 3 samples total! (with 
total of 77 annotated 2D slices). 
Leverages fact that each sample 
contains many instances of same 
repetitive structures w/ variation.

Cicek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. MICCAI 2016.
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Ex: Brain lesion segmentation
Training set: 37 PET scans 
(3D volumes)

Evaluation set: 11 PET scans

Volumes resized to 64x64x40 
for computational efficiency 

Blanc-Durand et al. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D 
U-Net convolutional neural network study. PLoS One, 2018. 
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Ex: Brain lesion segmentation

Blanc-Durand et al. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D 
U-Net convolutional neural network study. PLoS One, 2018. 
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Video data (high dimensional in time)

E.g. in:

Surgery Hospital patient monitoring Psychology
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Another approach: 3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z
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Another approach: 3D convolutions

Figure credit: 
https://www.researchgate.net/profile/Deepak_Mishra19/publication/330912338/figure/fig1/AS:723363244810254@15494
74645742/Basic-3D-CNN-architecture-the-3D-filter-is-convolved-with-the-video-in-three-dimensions.png

Slide filter 
along 3 
directions:
x, y, and z

For video data, 3rd 
dimension is time
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I3D: 3D convolutional network for video data
Inception Module (Inc.) w/ 

3D convolutions

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.
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I3D: 3D convolutional network for video data
Inception Module (Inc.) w/ 

3D convolutions

3D convs

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.
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I3D: 3D convolutional network for video data
Inception Module (Inc.) w/ 

3D convolutions
3D Inception Module used in Inception 
Network (also known as GoogLeNet)

3D convs

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.
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I3D: 3D convolutional network for video data
Inception Module (Inc.) w/ 

3D convolutions
3D Inception Module used in Inception 
Network (also known as GoogLeNet)

3D convs

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

Can pre-train from 2D datasets e.g. ImageNet by replicating 
and normalizing 2D weights over additional dimension!
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I3D: 3D convolutional network for video data
Inception Module (Inc.) w/ 

3D convolutions
3D Inception Module used in Inception 
Network (also known as GoogLeNet)

3D convs

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

Can pre-train from 2D datasets e.g. ImageNet by replicating 
and normalizing 2D weights over additional dimension!

Note: in general, 
can 3D-ify many 
2D architectures!
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Video classifiers (including I3D) can be enhanced 
with optical flow

Figure credit: Simonyan and Zisserman. Two-Stream Convolutional Networks for Action Recognition in Videos. NeurIPS 2014.

Two consecutive frames
Optical flow 

displacement vectors
horizontal (L) and vertical (R) 
components of displacement
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Video classifiers (including I3D) can be enhanced 
with optical flow

Figure credit: Simonyan and Zisserman. Two-Stream Convolutional Networks for Action Recognition in Videos. NeurIPS 2014.

Two consecutive frames
Optical flow 

displacement vectors
horizontal (L) and vertical (R) 
components of displacement

Directional components can be 
represented as images (or multiple 
channels of input volume!)
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Video classifiers (including I3D) can be enhanced 
with optical flow

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB

Video classifiers (including I3D) can be enhanced 
with optical flow
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB
(LSTM is a type of recurrent neural network. 
We will talk more about these soon!)

Video classifiers (including I3D) can be enhanced 
with optical flow
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB I3D (3D convs)
over RGB

Video classifiers (including I3D) can be enhanced 
with optical flow
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB I3D (3D convs)
over RGB

2D convs over RGB 
+ optical flow (OF)

Video classifiers (including I3D) can be enhanced 
with optical flow
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB I3D (3D convs)
over RGB

2D convs over RGB 
+ optical flow (OF)

Late 3D fusion of 
RGB + OF

Video classifiers (including I3D) can be enhanced 
with optical flow
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Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

LSTM over RGB I3D (3D convs)
over RGB

2D convs over RGB 
+ optical flow (OF)

Late 3D fusion of 
RGB + OF

Two I3D streams 
over RGB + OF

Video classifiers (including I3D) can be enhanced 
with optical flow



122Serena Yeung BIODS 220: AI in Healthcare Lecture 4 -

Preview: Recurrent neural networks

...

Input sequence

Output sequence

Fully connected neural networks
(linear layers, good for “feature vector” inputs)

Convolutional neural networks
(convolutional layers, good for image inputs)

Recurrent neural networks
(linear layers modeling recurrence relation across 

sequence, good for sequence inputs)
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Videos are sequences: natural fit for recurrent networks
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Videos are sequences: natural fit for recurrent networks

Abstracted overview:
Use a CNN to extract 
features from each frame 
(e.g. final-layer features), 
then use RNN to perform 
temporal modeling over 
sequence of features
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Videos are sequences: natural fit for recurrent networks
Diagram of a CNN + RNN “rolled out” over time
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Videos are sequences: natural fit for recurrent networks
Diagram of a CNN + RNN “rolled out” over time

Same idea of weight matrices 
(remember fully-connected 
networks) and nonlinear activation 
functions! Just applied to a neural 
network with a different connectivity 
structure
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Aside: how do we compute gradient updates? Remember backpropagation.

Think of computing loss function as staged computation of 
intermediate variables:

Now, can use a repeated application of the chain 
rule, going backwards through the computational 
graph, to obtain the gradient of the loss with 
respect to each node of the computation graph.

Network output:

“Forward pass”: 

“Backward pass”: 

Plug in from earlier 
computations via chain rule

Local gradients 
to derive

(not all gradients 
shown)
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Videos are sequences: natural fit for recurrent networks
This is a computational graph 
-> can backprop and train 
RNN and CNN jointly
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Videos are sequences: natural fit for recurrent networks
This is a computational graph 
-> can backprop and train 
RNN and CNN jointly

But a very large number of 
parameters to train 
simultaneously… more 
common to fine-tune a 
single-frame CNN over the 
data first (or use pre-trained 
CNN), then extract features 
and train the RNN separately
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Videos are sequences: natural fit for recurrent networks
This is a computational graph 
-> can backprop and train 
RNN and CNN jointly

But a very large number of 
parameters to train 
simultaneously… more 
common to fine-tune a 
single-frame CNN over the 
data first (or use pre-trained 
CNN), then extract features 
and train the RNN separately

Preview of RNNs. Will see again in 
our discussion of sequence EHR 
data.
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Videos are sequences: natural fit for recurrent networks
This is a computational graph 
-> can backprop and train 
RNN and CNN jointly

But a very large number of 
parameters to train 
simultaneously… more 
common to fine-tune a 
single-frame CNN over the 
data first (or use pre-trained 
CNN), then extract features 
and train the RNN separately

Preview of RNNs. Will see again in 
our discussion of sequence EHR 
data.

Aside: New class of neural network models 
(“Transformers”) introduced originally for NLP sequence 
data is now also starting to see exploration for video data. 
Will discuss in upcoming lecture on text data.
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Detecting patient mobilization activities in the ICU

Get patient 
out of bed

Get patient 
in bed

Sit patient 
in chair

Get patient 
out of chair
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Yeung*,Salipur*, et al. A Computer Vision System for Deep Learning-Based Detection of Patient Mobilization Activities in the ICU. npj Digital Medicine, 2019.

Detecting patient mobilization activities in the ICU
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Yeung*,Salipur*, et al. A Computer Vision System for Deep Learning-Based Detection of Patient Mobilization Activities in the ICU. npj Digital Medicine, 2019.

Detecting patient mobilization activities in the ICU
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Predicting ejection fraction in echocardiograms

Ouyang et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature, 2020.
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Summary
Finished up advanced deep learning models for visual recognition tasks

- Classification
- Semantic segmentation
- Object detection
- Instance segmentation
- 3D and Video

Will revisit some of these later with multimodal models and weakly / self- / 
un-supervised paradigms

Next time: Introduction to Electronic Health Records


