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Lecture 6:
Electronic Health Records

(Part 2)
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Announcements
Upcoming deadlines:

● A1 due Tue 10/18
● Project proposal due Fri 10/21

○ Remember that you must train a deep learning model somewhere in 
your project!

● Project partner finding session during review section this Friday, 1:30pm, 
Alway M106
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Agenda for today
- Finishing up from last time: RNN (LSTM) models for EHR prediction tasks
- More on EHR data
- More on feature representations
- A first look at model interpretability: soft attention



4Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Last time: overview of electronic health records

Figure credit: Rajkomar et al. 2018

Patient chart in digital form, 
containing medical and 
treatment history
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Johnson et al. MIMIC-III, a freely accessible critical care database. 2016.

A real 
example of 
EHR data: 
MIMIC-III 
dataset



6Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Examples of prediction tasks

Harutyunyan et al. 2019

In-hospital 
mortality

Phenotypes

Decompensation

Length-of-stay
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Model input: data vector Model output: prediction (single number) 

Let us consider the task of regression: predicting a single real-valued output from input data  

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

[age, weight, …, temperature, oxygen saturation] length-of-stay (days)

Remember: “vanilla” neural networks for predictions from 
clinical variables
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide credit: CS231n



9Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Long Short Term Memory (LSTM) Recurrent Networks

Unrolled Vanilla RNN Unrolled LSTM

Different computation to 
obtain ht

Figure credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Harutyunyan et al.
- Benchmarked LSTMs vs logistic regression on common prediction tasks 

using MIMIC-III data
- In-hospital mortality, decompensation, length-of-stay, phenotype 

classification

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

- Used a subset of 17 clinical 
variables from MIMIC-III
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Harutyunyan et al.

- Logistic regression models
- Use hand-engineered feature vector to represent a time-series: min, max, 

mean, std dev, etc. of each feature in several subsequences (full series, first 
10% of series, first 50%, last 10%, etc.)

- If feature does not occur in subsequence (missing data), impute with mean 
value from training set

- Categorical variables had meaningful numeric values -> no change
- Zero-mean unit-variance standardization of all features

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.

- LSTM models
- Bucket time series into regularly spaced intervals, take the value (or last value, 

if multiple) of each variable in the interval to create observation xt
- Encode categorical variables using a one-hot vector (vector of 0s with a 1 in 

the observed position). 
- If variable is missing in a time bucket, impute using most recent observed 

measurement if it exists, and mean value from training set otherwise
- Concat the values of each clinical variable with a binary mask indicating 

presence or not (i.e., missing and needed to impute) to form full observation 
feature vector xt

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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Harutyunyan et al.: logistic regression vs LSTMs

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Found better performance overall for LSTMs (S) vs logistic regression (LR). Also introduced 
more sophisticated variants and multi-task training (joint training of all tasks together).
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Harutyunyan et al.: logistic regression vs LSTMs

Figure credit: Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.

Found better performance for 
phenotyping acute vs chronic 
conditions -- makes sense!

Found better performance overall for LSTMs (S) vs logistic regression (LR). Also introduced 
more sophisticated variants and multi-task training (joint training of all tasks together).
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Recall: Harutyunyan et al. imputed missing data

- Logistic regression models
- Use hand-engineered feature vector to represent a time-series: min, max, 

mean, std dev, etc. of each feature in several subsequences (full series, first 
10% of series, first 50%, last 10%, etc.)

- If feature does not occur in subsequence (missing data), impute with mean 
value from training set

- Categorical variables had meaningful numeric values -> no change
- Zero-mean unit-variance standardization of all features

Harutyunyan et al. Multitask learning and benchmarking with clinical time series data. 2019.
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More on missing data
A common problem with clinical variable data

- Missing completely at random (MCAR)
- Missingness does not depend on the missing variable or on other variables
- Ex: A portion of patient pain surveys (producing variable of patient pain level) are randomly lost or unreadable 

- Missing at random (MAR)
- Missingness does not depend on the missing variable but may depend on other variables
- Ex: Male patients are less likely to complete patient pain surveys

- Missing not at random (MNAR) 
- Missingness can depend on the missing variable itself
- Ex: Patients with higher pain levels are less likely to complete patient pain surveys
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More on missing data
A common problem with clinical variable data

- Missing completely at random (MCAR)
- Missingness does not depend on the missing variable or on other variables
- Ex: A portion of patient pain surveys (producing variable of patient pain level) are randomly lost or unreadable 

- Missing at random (MAR)
- Missingness does not depend on the missing variable but may depend on other variables
- Ex: Male patients are less likely to complete patient pain surveys

- Missing not at random (MNAR) 
- Missingness can depend on the missing variable itself
- Ex: Patients with higher pain levels are less likely to complete patient pain surveys

MNAR highest degree of bias / most challenging to accurately impute. Analysis of how well imputation 
methods work for MCAR / MAR / MNAR cases beyond the scope of this course -> just know that these 
are missingness characteristics that can make accurate imputation more or less challenging.
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Strategies to impute data
- Simplest approaches:

- Delete records with missing data
- Fixed imputation of missing values with mean, median, previous value, interpolation, etc.
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Strategies to impute data
- Simplest approaches:

- Delete records with missing data
- Fixed imputation of missing values with mean, median, previous value, interpolation, etc.

- More sophisticated approaches:
- K-nearest neighbors (impute based on feature value of k closest neighbors determined through 

non-missing values)
- Predicting missing values (single imputation): Train regression or classification models to predict 

missing values based on other variables
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Strategies to impute data
- Simplest approaches:

- Delete records with missing data
- Fixed imputation of missing values with mean, median, previous value, interpolation, etc.

- More sophisticated approaches:
- K-nearest neighbors (impute based on feature value of k closest neighbors determined through 

non-missing values)
- Predicting missing values (single imputation): Train regression or classification models to predict 

missing values based on other variables

- Even more sophisticated approaches:
- Predicting missing values (multiple imputation): Perform single imputation multiple times based on 

different random initializations, then aggregate for final imputation + uncertainty measurement
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Strategies to impute data
- Simplest approaches:

- Delete records with missing data
- Fixed imputation of missing values with mean, median, previous value, interpolation, etc.

- More sophisticated approaches:
- K-nearest neighbors (impute based on feature value of k closest neighbors determined through 

non-missing values)
- Predicting missing values (single imputation): Train regression or classification models to predict 

missing values based on other variables

- Even more sophisticated approaches:
- Predicting missing values (multiple imputation): Perform single imputation multiple times based on 

different random initializations, then aggregate for final imputation + uncertainty measurement

- An ongoing active area of research:
- Methods incorporating deep learning generative models, etc.
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Example of imputation through prediction in the 
widely used MICE Algorithm1

Red = missing values across features A,B,C

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

Fill in missing entries with initial values 
(random, means, randomly drawn 
from distribution, etc.) 

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

Update missing values for feature A 
using regression model trained on all 
values (including red) of other features

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

Update missing values for feature B using 
regression model trained on all values (including 
red and updated/yellow) of other features

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

In this example, 
features A and B 
are known to be 
strongly 
correlated. See 
correlation 
including 
imputed values 
improve over 
updates

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

Continue this update process for feature 
C, and then circle back to feature A and 
repeat process in cycles until imputed 
values for all features have converged 
1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html
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Example of imputation through prediction in the 
widely used MICE Algorithm1

1van Burren, 2011. Figure credit: https://cran.r-project.org/web/packages/miceRanger/vignettes/miceAlgorithm.html

Continue this update process for feature 
C, and then circle back to feature A and 
repeat process in cycles until imputed 
values for all features have converged 

Full MICE Algorithm (multiple imputation) 
repeats this for N random initializations of the 
dataset and then aggregates for final imputation 
+ uncertainty measure. We will not cover 
different initialization methods and implications. 
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Sources of EHR data
- Open-source EHR datasets (MIMIC-III/IV, MIMIC-CXR, …)
- Restricted EHR data from individual institutions

- Major vendors: EPIC, Cerner, etc.
- Also: insurance claims data

- Fills in blanks of patient health outside the hospital!
- Visits with other care providers outside the hospital EHR system
- Pharmacy visits
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Sources of EHR data
- Open-source EHR datasets (MIMIC-III/IV, MIMIC-CXR, …)
- Restricted EHR data from individual institutions

- Major vendors: EPIC, Cerner, etc.
- Also: insurance claims data

- Fills in blanks of patient health outside the hospital!
- Visits with other care providers outside the hospital EHR system
- Pharmacy visits

Challenge: many of these data sources are in their own formats. How do we 
use multiple data sources?
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OMOP Common Data Model
- Observational Medical Outcomes 

Partnership (OMOP)
- Created from public-private 

partnership involving FDA, 
pharmaceutical companies, and 
healthcare providers

- Standardized format and 
vocabulary

- Allows conversion of patient data 
from different sources into a 
common structure for analysis 

- Intended to support data analysis

Figure credit: https://www.ohdsi.org/wp-content/uploads/2014/07/Why-CDM.png
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OMOP Common Data Model

Figure credit: https://ohdsi.github.io/TheBookOfOhdsi/images/CommonDataModel/cdmDiagram.png
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STARR: Stanford Hospital Data in OMOP
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FHIR
- Fast healthcare interoperability 

resources (FHIR)
- Web-based standards / framework 

for secure exchange of electronic 
healthcare information across 
disparate sources

- Based on “resource” elements that 
contain information to be 
exchanged, as a JSON or XML 
object 

Figure credit: https://www.hl7.org/fhir/DSTU1/shot.png
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FHIR

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.
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FHIR

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.

FHIR-based 
information exchange 
between different 
sources



37Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

FHIR

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.

Data from all sources can be 
written in an OMOP data 
repository for analysis
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FHIR

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.

OHDSI (parent of OMOP) also 
provides tools and resources for 
data analysis
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FHIR

Figure credit: Choi et al. OHDSI on FHIR Platform Development with OMOP CDM mapping to FHIR Resources. 2016.

SMART on FHIR 
is a platform for 
building third-party 
apps that interface 
with health data in 
e.g. EHRs, 
through FHIR.

Mandel et al. SMART on FHIR: a 
standards-based, interoperable apps 
platform for electronic health records. 
JAMA, 2016.
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Aside: improving EHR technology and utility major 
current issue in healthcare
- Have already seen one challenge: interoperability 

- EHR systems were built and adopted very quickly -- not enough time to design 
for interoperability

- Are EHRs being used meaningfully?
- Clinicians spending huge amount of time on documentation and interfacing with 

EHR system -> burnout and reduced patient interaction
- Lots of pain points. What are the benefits?

- Ongoing efforts to reduce pain points
- Improving user experience and AI-assisted documentation (dictation, 

autocomplete, etc.)
- Ongoing efforts to improve value

- Data analytics, clinical decision support



41Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Rajkomar et al. 2018
- Clinical predictions from patients’ entire 

raw EHR records, in FHIR format
- De-identified EHR data from two US 

academic centers with 216,221 adult 
patients

- Prediction tasks: in-hospital mortality, 
30-day unplanned readmission, 
prolonged length of stay, patients’ final 
discharge diagnoses

- 46,864,534,945 total data points across 
data (every event, every word in note, 
etc.) Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.



42Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Data representation

Raw data as FHIR 
resources

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Data representation Each element is mapped to a token ID 
(e.g. medication=zosyn), with a token 
“feature type”

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Data representation

Every unique token is numerically represented by an “embedding vector” that will 
represent the token in the model. The embedding vector values are learned; 
similar tokens will probably have similar embedding vectors.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Token embeddings

[0 0 1 0 0 0 0 …. 0] 

0.5 0.2 0.1

0.6 0.1 0.6

0.5 0.8 0.2

0.7 0.9 0.3

0.3 0.5 0.1

0.7 0.8 0.1

...

X = [0.5   0.8   0.2]

N x D embedding matrix

1xN token input (one-hot 
selection of token)

D-dim token embedding
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Token embeddings

[0 0 1 0 0 0 0 …. 0] 

0.5 0.2 0.1

0.6 0.1 0.6

0.5 0.8 0.2

0.7 0.9 0.3

0.3 0.5 0.1

0.7 0.8 0.1

...

X = [0.5   0.8   0.2]

N x D embedding matrix

1xN token input (one-hot 
selection of token)

D-dim token embedding

In general, learning embedding 
matrices are a useful way to map 
discrete data into a semantically 
meaningful, continuous space! 
Will see frequently in natural 
language processing.
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Computational graph input to RNN

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

fE

x1

fE

x2

fE

x3
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Computational graph input to RNN

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

M x N 
one-hot 
token 
embedding
s (M 
feature 
tokens at 
the 
timestep, N 
tokens in 
vocab)

fE

x1

fE

x2

fE

x3
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Computational graph input to RNN

e11 e12 e13

e21 e21 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

E =

N x D 
embedding 
matrix (N 
words in 
vocab, 
D-dimension
al 
embedding)

fE

x1

fE

x2

fE

x3
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Computational graph input to RNN

e11 e12 e13

e21 e21 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

E =

Matrix 
multiplication of 
fE with x selects 
embedding 
vectors 
corresponding to 
tokens (M x D 
output)

fE

x1

fE

x2

fE

x3
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Computational graph input to RNN

e11 e12 e13

e21 e21 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

E =

Reshape into 
a 1 x MD 
vector -> 
input into 
RNN at each 
timestep

fE

x1

fE

x2

fE

x3
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Computational graph input to RNN

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

Embedding matrix has values that 
are randomly initialized at the 
beginning, then learned through 
training (backpropagation)!

e11 e12 e13

e21 e21 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

E =fE

x1

fE

x2

fE

x3



53Serena Yeung BIODS 220: AI in Healthcare Lecture 6 -

Computational graph input to RNN

e11 e12 e13

e21 e21 e23

e31 e32 e33

e41 e42 e43

e51 e52 e53

h0 fW h1 fW h2 fW h3 … 

W

hT

reshape reshape reshape

E =

Embedding matrix has values that 
are randomly initialized at the 
beginning, then learned through 
training (backpropagation)!
(shown for N = 5, D = 3)

Note that E is used at each timestep in 
computational graph of RNN

fE

x1

fE

x2

fE

x3
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Rajkomar et al. RNN (LSTM) input

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. RNN (LSTM) input

One vector representation for each token 
“feature type” (e.g. medication, procedure). 
Embeddings of multiple tokens corresponding 
to a same feature type are combined through 
averaging.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. RNN (LSTM) input

A little bit of added complexity: each feature 
type has its own embedding dimension D. A 
hyperparameter!

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.

One vector representation for each token 
“feature type” (e.g. medication, procedure). 
Embeddings of multiple tokens corresponding 
to a same feature type are combined through 
averaging.
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Rajkomar et al. RNN (LSTM) input
Also include an embedding 
representation of time delta from 
last RNN input. 

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.

A little bit of added complexity: each feature 
type has its own embedding dimension D. A 
hyperparameter!

One vector representation for each token 
“feature type” (e.g. medication, procedure). 
Embeddings of multiple tokens corresponding 
to a same feature type are combined through 
averaging.
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Rajkomar et al. RNN (LSTM) input

Refer to paper for other details, e.g. bucketing 
of continuous data types into discrete token 
IDs.

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.

A little bit of added complexity: each feature 
type has its own embedding dimension D. A 
hyperparameter!

One vector representation for each token 
“feature type” (e.g. medication, procedure). 
Embeddings of multiple tokens corresponding 
to a same feature type are combined through 
averaging.

Also include an embedding 
representation of time delta from 
last RNN input. 
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Rajkomar et al. 

Compared deep learning 
approach with baselines (e.g. 
logistic regression), and using all 
variables in data (flattened vector) 
vs hand-crafted features from 
subset of variables

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. 

Evaluated model at different time 
points, e.g., at admission, 24 hrs 
after admission, discharge

Compared deep learning 
approach with baselines (e.g. 
logistic regression), and using all 
variables in data (flattened vector) 
vs hand-crafted features from 
subset of variables

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Rajkomar et al. 

Also trained a model with “soft attention” on a simpler task 
(in-hospital mortality, subset of data variables) to obtain 
interpretability

Rajkomar et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018.
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Soft attention

x

Soft attention
weighting

fA

z

p

Output y

Rest of the neural 
network

- Weight input variables by an 
“attention weights” vector p

- Learn to dynamically produce p 
for any given input, by making it 
a function of the input x and a 
fully connected layer fA(with 
learnable parameters A) 

- By optimizing for prediction 
performance, network will learn 
to produce p that gives stronger 
weights to the most informative 
features in x!
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Soft attention

Soft attention
weighting

Input x = [x1,x2,… ,xD] 
z

Attention weights p 
=[p1,p2,… ,pD] 

Output y

Rest of the neural 
network

- Weight input variables by an 
“attention weights” vector p

- Learn to dynamically produce p 
for any given input, by making it 
a function of the input x and a 
fully connected layer fA(with 
learnable parameters A) 

- By optimizing for prediction 
performance, network will learn 
to produce p that gives stronger 
weights to the most informative 
features in x!

Attention-weighted input 
z = [z1,z2,… ,zD] 

x fA p Learnable fully connected 
layer fA with weights A
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Soft attention

Soft attention
weighting

Input x = [x1,x2,… ,xD] 
z

Attention weights p 
=[p1,p2,… ,pD] 

Output y

Rest of the neural 
network

- Weight input variables by an 
“attention weights” vector p

- Learn to dynamically produce p 
for any given input, by making it 
a function of the input x and a 
fully connected layer fA(with 
learnable parameters A) 

- By optimizing for prediction 
performance, network will learn 
to produce p that gives stronger 
weights to the most informative 
features in x!

Attention-weighted input 
z = [z1,z2,… ,zD] 

x fA p Learnable fully connected 
layer fA with weights A

p is output of a softmax 
function -> attention 
weights sum to 1
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Soft attention in RNNs

h0 fW h1 fW h2 fW h3 … 
hT

Soft attention
weighting

z1 z2 z3

Soft attention
weighting

Soft attention
weighting

Note that fA produces attention weights as a 
function of both current input x as well as 
previous hidden state h!

x3 fA px2 fA px1 fA p
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Soft attention in RNNs

h0 fW h1 fW h2 fW h3 … 
hT

Soft attention
weighting

z1 z2 z3

Soft attention
weighting

Soft attention
weighting

Note that fA produces attention weights as a 
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previous hidden state h!
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features that the model gives 
the most importance to at 
every time-step
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Soft attention in RNNs

h0 fW h1 fW h2 fW h3 … 
hT

Soft attention
weighting

z1 z2 z3

Soft attention
weighting

Soft attention
weighting

Weight matrix A 
shared across 
multiple 
timesteps in 
computational 
graph

Attention weights pi indicate 
features that the model gives 
the most importance to at 
every time-step i

Note that fA produces attention weights as a 
function of both current input x as well as 
previous hidden state h!

x3 fA px2 fA px1 fA p
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Active areas of research
- Improving prediction models for clinically meaningful tasks

- Another popular task: early warning for critical conditions such as 
sepsis 

- Multimodal modeling: more effective joint reasoning over different 
modalities of data (e.g. text, lab results, images, etc.)
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Summary
Today’s topics

- More on EHR data, missing values, and data formats
- More on feature representations
- A first look at model interpretability: soft attention

Next lecture

- More on text data and representations


