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Lecture 8: Multimodal data, 
multimodal models, weakly and 

self-supervised learning
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Announcements
● A2 due next Tue Nov 1
● Midterm Mon Nov 7 in-class

○ 80 minutes
○ 1 page 8.5’’ x 11’’ of notes allowed (back and front)
○ No calculators allowed or needed
○ Covers material through “Genomics: Introduction”
○ Practice midterm will be released about a week before the midterm
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Today
- Multimodal data and models
- Weakly and self-supervised learning
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Multimodal data
Can be very similar, e.g. different image acquisition variants

Figure credit: Dong et al. MIUA, 2017.
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Multimodal data
Or very different, e.g. different types of clinical data

Figure credit: Rajkomar et al. 2018.
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Similar data: can fuse at input

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.

- Havaei et al.: brain tumor 
segmentation from multimodal 
MR images
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Similar data: can fuse at input

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.

- Havaei et al.: brain tumor 
segmentation from multimodal 
MR images

Stack modalities such that 
each channel of input is a 
different modality.
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views can 

be considered different modalities)



9Serena Yeung BIODS 220: AI in Healthcare Lecture   8 -

Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

Separate initial 
processing for 
different 
mammogram views

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views can 

be considered different modalities)
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More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views can 

be considered different modalities)

Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

Shared weights 
across the two 
networks
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

More different views 
have separately 
learned parameters

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views can 

be considered different modalities)
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

Multimodal fusion at 
intermediate part of processing 
(very common): concatenate 
outputs of modality-specific 
processing into one feature 
vector. 

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views 

can be considered different 
modalities)
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

Fully connected layer (or 
several) afterwards. 
Concatenated feature 
vector no longer contains 
spatial relationships 
suitable for conv layers.

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views 

can be considered different 
modalities)
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views 

can be considered different 
modalities)

Predict all 
4 binary 
outputs 
from each 
view
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

More different data: 
may want some layers of
modality-specific processing 

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views 

can be considered different 
modalities)

This model also uses a 
second type of fusion for 
the CC vs. MLO views: 
late fusion of predictions 
through averaging.
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A recurrent network approach for combining multimodal data  
Wang et al. 2018:

- Jointly process chest x-rays and associated reports to produce disease labels that can 
be used to produce auto-annotation disease labels

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.
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A recurrent network approach for combining multimodal data  
Wang et al. 2018:

- Jointly process chest x-rays and associated reports to produce disease labels that can 
be used to produce auto-annotation disease labels

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Use NLP approaches to generate 
word embedding representations of 
words in text
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A recurrent network approach for combining multimodal data  
Wang et al. 2018:

- Jointly process chest x-rays and associated reports to produce disease labels that can 
be used to produce auto-annotation disease labels

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Use common CNN networks 
to generate feature 
representation of image data
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A recurrent network approach for combining multimodal data  
Wang et al. 2018:

- Jointly process chest x-rays and associated reports to produce disease labels that can 
be used to produce auto-annotation disease labels

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Use LSTM to process 
sequence of text data 
embedding representations
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A recurrent network approach for combining multimodal data  

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Image data is an 
additional input to the 
LSTM at each time step 
(with soft-attention 
weighting) 

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can 

be used to produce auto-annotation disease labels
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A recurrent network approach for combining multimodal data  

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Final fully-connected 
layer fusion and 
prediction of disease 
labels

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can 

be used to produce auto-annotation disease labels



22Serena Yeung BIODS 220: AI in Healthcare Lecture   8 -

Another direction of research: learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval
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Another direction of research: learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval

Image-specific 
processing
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Another direction of research: learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval

Text-specific 
processing
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Another direction of research: learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval

Mapping to joint 
embedding 
space
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Another direction of research: learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval Different loss objectives can 

be used to encourage desired 
embedding space 
relationships
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Categorizations of multimodal models

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.



28Serena Yeung BIODS 220: AI in Healthcare Lecture   8 -

Categorizations of multimodal models

Early fusion: 
concatenate / 
combine data 
before any model 
processing. 
Includes using 
extracted features 
as input, if model 
gradients are not 
backpropagated to 
update feature 
extractor 
parameters

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Categorizations of multimodal models

Joint fusion: Both 
modality-specific 
components (with 
learnable 
parameters) and 
combined-modality 
components within 
the model, that are 
updated during 
model training

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Categorizations of multimodal models

Late fusion:
Main learnable 
model 
components are 
only model 
specific. 
Individual 
modality outputs 
are then 
aggregated.

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Q: What kind of fusion was this model?

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.

- Havaei et al.: brain tumor 
segmentation from multimodal 
MR images
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Wu et al. Deep Neural Networks Improve Radiologists’ Performance in Breast 
Cancer Screening. IEEE Trans Med Imaging, 2019.

   Wu et al. 2019:

- Binary classification of breast 
malignant and benign findings

- Model based on ResNet architecture
- Multi-view network (different views can 

be considered different modalities)

Q: What kind of fusion was this 
model?
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Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can 

be used to produce auto-annotation disease labels

Wang et al. TieNet: Text-Image Embedding 
Network for Common Thorax Disease 
Classification and Reporting in Chest X-rays. 
CVPR, 2018.

Q: What kind of fusion was this model?



34Serena Yeung BIODS 220: AI in Healthcare Lecture   8 -

Back to learning multimodal embedding spaces

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurIPS ML4H, 2018.

Hsu et al. 2018:
- Learn mapping from images and text to vectors in the same embedding space, such that images are 

embedded closer to their corresponding reports than other reports, and vice versa. 
- Can be used for e.g. cross-domain retrieval Different loss objectives can 

be used to encourage desired 
embedding space 
relationships
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A little more: learning multimodal embedding spaces through contrastive 
learning

Zhang et al. 2020.

Huang et al. 2021.

Radford et al. 2021.
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using 
paired training data of inputs with corresponding ground truth labels for the desired task 
(e.g., manual class labels or EHR-obtained labels).
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using 
paired training data of inputs with corresponding ground truth labels for the desired task 
(e.g., manual class labels or EHR-obtained labels).

Self-supervised learning does not directly train a model to perform the desired 
prediction task. Instead, it generates supervisory training signal from raw data itself to 
learn a good feature encoder for the data type. No external labels (e.g, manual class 
labels) are used during self-supervised training. Then, this feature encoder can be 
useful for downstream tasks, such as initializing and fine-tuning a prediction model with 
much less labeled data needed. 
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using 
paired training data of inputs with corresponding ground truth labels for the desired task 
(e.g., manual class labels or EHR-obtained labels).

Self-supervised learning does not directly train a model to perform the desired 
prediction task. Instead, it generates supervisory training signal from raw data itself to 
learn a good feature encoder for the data type. No external labels (e.g, manual class 
labels) are used during self-supervised training. Then, this feature encoder can be 
useful for downstream tasks, such as initializing and fine-tuning a prediction model with 
much less labeled data needed. 
Effective way to tackle challenges of limited labeled data! Related to earlier discussion on pre-training 
on larger datasets and transfer learning, now we can also use self-supervised learning to pre-train on 
larger amounts of unlabeled data from the same domain.
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives: 

Innate relationship objective
E.g., predict rotation angle (or some 
other innate property) of an image 

Figure credit: Mars Huang
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives: 

Innate relationship objective
E.g., predict rotation angle (or some 
other innate property) of an image 

Self-prediction objective
Mask parts of input data and 

predict these parts Figure credit: Mars Huang
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives: 

Innate relationship objective
E.g., predict rotation angle (or some 
other innate property) of an image 

Self-prediction objective
Mask parts of input data and 

predict these parts 

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input Figure credit: Mars Huang
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives: 

Innate relationship objective
E.g., predict rotation angle (or some 
other innate property) of an image 

Self-prediction objective
Mask parts of input data and 

predict these parts 

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 

Can have varied formulations of these 
objectives within each type

Figure credit: Mars Huang
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 
Transformation 

t
Transformation 

t’
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 
Transformation 

t
Transformation 

t’

Transformation set: 
random crop (w/ flip 

and resize), color 
distortion, Gaussian 

blur
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 
Transformation 

t
Transformation 

t’

Transformation set: 
random crop (w/ flip 

and resize), color 
distortion, Gaussian 

blur

Paper tested a variety of other transformations:
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 
Transformed 

versions of input
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Encoder network f 
(same model applied 

to both image 
transformers)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Projection head 
(MLP w/ one 
hidden layer), 
same network 
applied to both 
representations 

h_i, h_j 
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

Compute loss over a minibatch of N examples. Generate two augmented views of each example, resulting in 2N data 
points total. Now in the contrastive loss, we wish for a pair of data points (i,j) corresponding to augmentations of the 

same example to have closer representation similarity than with other data points generated from different examples. 
Use a cross-entropy formulation: given data point i, similarity with data point j should have higher score than with all 

other points such that it is “correctly classified”!
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

Compute loss over a minibatch of N examples. Generate two augmented views of each example, resulting in 2N data 
points total. Now in the contrastive loss, we wish for a pair of data points (i,j) corresponding to augmentations of the 

same example to have closer representation similarity than with other data points generated from different examples. 
Use a cross-entropy formulation: given data point i, similarity with data point j should have higher score than with all 

other points such that it is “correctly classified”!

Loss for a pair of 
data points (i,j)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!
Similarity score between final-layer 

representations of i and j
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!
Similarity score between final-layer 

representations of i and j

Use cosine similarity
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!
Exponentiate 

From here, looks very similar to 
softmax loss (generalized cross 
entropy to multiple classes)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

Detail: Loss uses a 
temperature hyperparameter, 

controls peakiness of final 
probability distribution for 
better learning dynamics

From here, looks very similar to 
softmax loss (generalized cross 
entropy to multiple classes)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

Normalize over scores of 
similarity between i and all 

other data points in the 
minibatch (2N total)

From here, looks very similar to 
softmax loss (generalized cross 
entropy to multiple classes)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

Negative log likelihood, 
as in softmax / 
cross-entropy

From here, looks very similar to 
softmax loss (generalized cross 
entropy to multiple classes)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

Contrastive loss can take the form of a familiar cross-entropy loss!

For a minibatch of N examples (2N augmented data points), compute this loss over all corresponding pairs 
(i,j), as well as (j,i) for symmetry of the loss, and then average these individual loss terms (2N terms total)
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss
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SimCLR: a common approach for contrastive self-supervised learning

Contrastive objective
Different views of the same input should 
have more similar representation to each 

other than with a different input 
Chen et al. 2020

SimCLR formulation

Input 

Contrastive loss

After self-supervised training, can fine-tune the encoder f on smaller labeled 
datasets. Can also directly extract learned representations h for downstream tasks.
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Multimodal contrastive learning

SimCLR (single-modality)

ConVIRT (multi-modality)
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Multimodal contrastive learning

SimCLR (single-modality)

ConVIRT (multi-modality)

In single-modality 
contrastive learning, 
representations h are 

shared-encoder 
outputs of two different 
augmentations of the 

same input. Want 
augmentations 

corresponding to the 
same input to be more 
similar to each other 

than to those 
corresponding to 
different inputs
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Multimodal contrastive learning

SimCLR (single-modality)

ConVIRT (multi-modality)

In multi-modality 
contrastive learning, 
representations h are 
encoder outputs of the 

same concept (e.g. 
radiology image and 

corresponding report), 
from two different 
modality-specific 

encoders. Want these 
to be more similar to 
each other than with 
non-corresponding 
images / reports.
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Input image/text data
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Modality-specific sampling 
and transformation
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Modality-specific encoders: ResNet-50 for images and BERT 
(initialized with ClinicalBERT) for text. Only fine-tune last 6 

layers of BERT encoder during pre-training.
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Encoded representations of image and text
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Small projection function (MLP) used only during contrastive 
learning, not downstream task fine-tuning, as with SimCLR
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ConVIRT

Zhang et al. 2020.

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Same contrastive loss on projection function outputs, as in SimCLR. 
“Correct” matched pairs are now those from the same patient image/text 

case, different from the two augmented views of the same input in SimCLR.
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GLORIA

Huang et al. 2021.

Many radiology reports are long – associating all parts of a report equally with all regions of an image 
may be too coarse
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GLORIA

Huang et al. 2021.

Many radiology reports are long – associating all parts of a report equally with all regions of an image 
may be too coarse

Extension to ConVIRT: beyond global contrastive loss, jointly train with a localized contrastive loss between 
words and attention-weighted regions of images (learn the attention weighting, as in previous lectures)
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CLIP

Radford et al. 2021.

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million 
image-text pairs
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CLIP

Radford et al. 2021.

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million 
image-text pairs

Dataset generated by searching for 
image-text pairs on the web, where text 
comes from a base query list of 500,000 
queries comprising all words occurring at 
least 100 times in the English version of 
Wikipedia. This is augmented and 
processed in various ways, see paper for 
details.
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CLIP

Radford et al. 2021.

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million 
image-text pairs

Transformer-based, trained from scratch
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CLIP

Radford et al. 2021.

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million 
image-text pairs

Can be used for zero-shot prediction tasks
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Complementary to self-supervision: weak supervision is another 
class of methods to improve learning in limited label scenarios

- Machine learning paradigm where labels for supervised training are obtained 
from noisy or imprecise (but more easily accessible) sources

- One possibility is through corresponding data available in a different modality! 
(e.g., radiology reports as a source of weak supervision for radiology images)
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Weak supervision from radiology reports
Can use rule-based approaches for obtaining labels from free-text radiology 
reports

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
Figure credit: Nishith Khandwala et al., 2017.
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How can we produce good labels from noisy sources? 
One approach: Aggregate multiple rules (labeling functions) with majority voting 

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
Figure credit: Nishith Khandwala et al., 2017.
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How can we produce good labels from noisy sources? 
More sophisticated approach: learn models for how to best aggregate noisy 
labeling functions! 

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
Figure credit: Nishith Khandwala et al., 2017.
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How can we produce good labels from noisy sources? 
More sophisticated approach: learn models for how to best aggregate noisy 
labeling functions! 

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
Figure credit: Nishith Khandwala et al., 2017.
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“Data programming” paradigm for weak supervision

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
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Summary
Today we covered:

- Multimodal data and models
- Self-supervised learning (including contrastive learning)

- Both single-modality and multi-modality

- Weakly supervised learning

Next time:

- More on Transformers and Multimodal Models


