Lecture 8: Multimodal data,
multimodal models, weakly and
self-supervised learning
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Announcements

e A2 due next Tue Nov 1

e Midterm Mon Nov 7 in-class

80 minutes

1 page 8.5” x 11” of notes allowed (back and front)

No calculators allowed or needed

Covers material through “Genomics: Introduction”

Practice midterm will be released about a week before the midterm

O O O O O
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Today

- Multimodal data and models
- Weakly and self-supervised learning
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Multimodal data

Can be very similar, e.g. different image acquisition variants

Original Ground Truth Segmentation Original Ground Truth Segmentation

ﬂ«\- —\. !J,M.r

Figure credit: Dong et al. MIUA, 2017.
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Multimodal data

Or very different, e.g. different types of clinical data

Encounters O O O

: i
H |
Labs & Flowsheets| oa ® ODQOM®Od0 @ 000 | 0 ooo® O DD GREBCOTO 000!
Orders .8 D@ O ! 0 I (o) 1
Procedures H 1
Diagnoses E | E
Notes ' 3 90 Ooam |  J g
Medication o9 i | DO i
| ! ) ! H
04:00 08:00 12:00 | 16:00 20:00 00:00 04:00 08:00 12:00 ! 16:00
Day 1 i Day 2 ]
B e e R —————— =
00: o:: hrs +24 dD hrs
-11:42 hours
+3:33 hours
Pegfilgrastim 2:42 hours Physician Note | +7:38 hours +22:47 hours
Medication Radiol Report - HEST ABDOMEN PELVI! Imon: nsult Not
2 *.. PMH of metastatic breast adlojogy feport: CY.CHES Do S £y ary;consukNets
Vancomycin, cancer, R lung malignant “... FINDINGS : CHEST LUNGS AND PLEURA: “.. has a complicated pleural
Metronidazole effusion, and R lung empyema Redemonstration of a moderate left pleural space that requires IR guidance.
who presents with increased effusion. interval removal of a right chest CT scan showing increased
drainage from tube within a loculated right pleural effusion loculted effusion on R compared
8% oike R lung pleurx tract .. " which contains foci of air. [..]. IMPRESSION: 1. to date..”
- Interval progression of disease in the chest and
Nursing Flowsheet e 030 3
abdomen including increased mediastinal
NUR RS BRADEN lymphadenopathy, pleural/p hymal
SCALE SCORE : 22 disease within the right lung, probable new
hepatic metastases and subcutaneous nodule
within the thorax [..]"
Figure credit: Rajkomar et al. 2018.
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Similar data: can fuse at input

- Havaei et al.: brain tumor
segmentation from multimodal
MR images

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.
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Similar data: can fuse at input

- Havaei et al.; brain tumor

segmentation from multimodal
MR images

64x24x24 64x21x21 \
Stack modalities such that 1
each channel of input is a 4 b5 [\ 224x21x21
diff t dalit 1 i Output
Imerent moaality. Input Cony 7x7 + Conv 3x3 + Sx1x1
4x33x33 Maxout + Maxout + .
Pooling 4x4 Pooling 2x2 T :
1
_—/ : Conv 21x21 +
1 1 Softmax
Conv 13x13 + Concatenation /
# Parameters 651,488 Maxout 160x21x21

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.
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More different data:
may want some layers of
modality-specific processing

Wu et al. 2019:

- Binary classification of breast
malignant and benign findings

- Model based on ResNet architecture

- Multi-view network (different views can
be considered different modalities)

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019.

left breast left breast right breast right breast

1 - ]

: malignant / : benign / :: malignant / :. benign / :

| not mdhgnam 11 not benign 1, not malignant 1, not benign

_______________ f----.__--- _--_...____r____.
average average average average

soﬁmax] [softmax softmax softmax| [softmax| [softmax| |softmax isoftmaxl

[ fullyconnected layer ][ fullyconnected layer ]

[ concatenation ] [ concatenation
average average average average
poohng poohng poolmg poolung

ResNet-ZZ ResNet-Zz ResNet 22 ResNet 22

L-MLO R-MLO
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left breast left breast right breast right breast

More different data: i ] el

, not malignant not benign not malignant, not benign

may want some layers of h';;;m;"'“;;fa;“';;;,a;;"'h;;fa;"'

modality-specific processing ] [ Fj

Wu et al. 2019: Separate intial [ fully conm;cted layer ][ fuIIy conn?cted layer ]
: e rocessing for tenati tenati

- Binary classification of breast P [ o | smeomuomi

malignant and benign findingS mammogram views average average [ average }[ average ]
. oling pooling poollng

- Model based on ResNet architecture

- Multi-view network (different views can ResNet-22" ResNet-22  ResNet-22 ResNet 22
be considered different modalities) ‘ ‘ “ ‘

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast

Cancer Screening. IEEE Trans Med Imaging, 2019. L-MLO R-MLO
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More different data:
may want some layers of
modality-specific processing

Wu et al. 2019:

- Binary classification of breast Shared weights
malignant and benign findings across the two
networks
- Model based on ResNet architecture
- Multi-view network (different views can
be considered different modalities)

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019.

left breast left breast right breast right breast

1 - ]

: malignant / : benign / :: malignant / :. benign / :

| not mdhgnam 11 not benign 1, not malignant 1, not benign

_______________ f----.__--- _--_...____r____.
average average average average

soﬁmax] [softmax softmax softmax| [softmax| [softmax| |softmax isoftmaxl

[ fullyconnected layer ][ fullyconnected layer ]

I i

[ concatenation ][ concatenation

average average average average
poohng poohng poolmg poolung

ResNet-ZZ ResNet-Zz ResNet 22 ResNet 22

L-MLO R-MLO
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left breast left breast right breast right breast

More different data: i ] el

, not malignant not benign not malignant, not benign

may want some layers of h';;;m;"'“;;fa;“';;;,a;;"'h;;fa;"'

modality-specific processing ] [ Fj

Wu et al. 2019: [ fully connected layer ][ fuIIy connected layer ]
[ [
Bi I ificati f b t More different views [ concatenation ][ concatenation
- Binary classification of breas have separately — —_
mallgnant and benlgn flndlngS learned parameters average ( average ][ average }[ average ]
. ling pooling pooling pooling
- Model based on ResNet architecture =
= . ) T~ 1 r
- Multi-view network (different views can ResNet-22 | ResNet-22  ResNet-22  ResNet-22

be considered different modalities)

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019. L-cC R-CC L-MLO R-MLO
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left breast left breast nght breast nght breast

More different data:

| not mdhgnam- not benign 1] not mahgnant 1 not benign

may want some layers of f';;fa;;"'";;fa;;'"";;;fa;;"'h;;,a;;"'

modality-specific processing ] [ Fq

Multimodal fusion at

Wu et al. 2019: intermediate part of processirIg fully connected layer ][ fuIIy connected layer
(very common): concatenate i f
outputs of modality-specific concatenation ][ concatenation

- Blnary classification of breast processing into one featur o i

malignant and benign findings vector.

[ average ][ average ][ aVerage J[ aVerage ]
. li li li oI g
- Model based on ResNet architecture '°°° i p°° = p°° s B

- Multi-view network (different views ResNet 23 ResNet-zz ResNet 22 ResNet 22
can be considered different
modalities)

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast

Cancer Screening. IEEE Trans Med Imaging, 2019. L-MLO R-MLO
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left breast left breast nght breast nght breast

More different data:

| not mdhgndmn not benign |, not m,ahgnant , not benign

may want some layers of f';;fa;;"'";;fa;;'"";;;fa;;"'h;;,a;;"'

modality-specific processing ] [ Fq

Fully connected layer (or
Several) afterwards. [ fully connected layer ][ fuIIy connected layer
Concatenated feature 1 i

. e . VeCtor no Ionger Contalns [ concatenation ][ concatenation

- Binary classification of breast spatial relationships

Wu et al. 2019:

malignant and benign findings suitable for conv Iayers. [ average average [ average J[ average

. li li li oI g

- Model based on ResNet architecture '°°° e p°° = p°° ol B i
- Multi-view network (different views ResNet 23 ResNet-zz ResNet 22 ResNet 22

can be considered different
modalities)
Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast

Cancer Screening. IEEE Trans Med Imaging, 2019. L-MLO R-MLO
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left breast left breast right breast right breast

More different data: i ] el

, not malignant not benign not malignant, not benign

may want some layers of h';;;m;"'“;;fa;“';;;,a;;"'h;;fa;"'

modality-specific processing ] [ Fj

Wu et al. 2019: Predict all [ fully connected layer ][ fuIIy connected layer ]
4 binary [ [
. . e . tenati tenati
- Binary classification of breast outputs [ ooomton )| comstanaon
_ _ o from each
malignant and benign findings view [ average || average [ average }[ average
. poohng li pool ng poolung

- Model based on ResNet architecture p°° = '
- Multi-view network (different views ResNet-zz ResNet-zz ResNet 22 ResNet 22

can be considered different

modalities)
Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019. L-MLO R-MLO
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left breast left breast nght breast nght breast

More different data: S T
may want some layers of i i
modality-specific processing

[ average ][ average ]
This model also uses a
second type of fusion for T i

[ fully connected layer ][ fully connected layer ]

Wu et al. 2019:

Bi s the CC_VS- MLO views: | concatenation ][ concatenation
- Binary classification of breast |ate fusion of predictions
malignant and benign findings through averaging. [ average ] average [ average J[ average
- Model based on ResNet architecture '°°°"ng p°°""g p°°""g °°°"ng
- Multi-view network (different views ResNet 2% ResNet-zz ResNet 22 ResNet 22
can be considered different
modalities)
Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019. L-MLO R-MLO
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A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can
be used to produce auto-annotation disease labels

Input: Text Report

Attention-encoded Text Embedding |7
Word B h XAETE
embedding — — T 3
we,t=1..T Wil 5 G Wend ] 5
—_— E — e —, E il 1
9 3
2 g
g > E DN 2 1 t B B
Qo ! ' g3
o3 =32 + Wstart B 9 By R
G O 8 = 3 gg
23 =5 3 =
g S S 2 — x| X a, |*| X * = g
22 T|x5 7 ' ar [* X 3| | &
=93 o g
o r:p’ Oz
3z i \ 91 z
o g H]
<} X < Yo T a
] |2 ?
3 2
\ | XSW—GAP
Saliency Welghted Global Average Poolmg

Wang et al. TieNet: Text-lmage Embedding
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings
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Serena Yeung BIODS 220: Al in Healthcare Lecture 8- 16



A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can

be used to produce auto-annotation disease labels

Input: Text Report
. P S Attention-encoded Text Embedding I—
. Word A h Lapre
; embedding — — T 3
% w,t=1..T Wil— 5 G Wend ] 5
“Dashed box for training only - g a— » 2 5 93-_
Input: Image o / t t 2 g
. - o]
AR e NS [ Bl
z ! : S b 20
Use NLP approaches to generate 2| B8 =0 st N oo NEINEE
: : 25,38 ® T
word embedding representations of Eeiol| @ [f x a |*| x ar |*| x =l | §
. 25 =g - El
words in text 82| EE \ B L 1] =
2 oy g @
S X < 9o T 8
| |2% P
\ | Ksw-car
Saliency Welghted Global Average Poolmg

Wang et al. TieNet: Text-lmage Embedding
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings
ical small
ne: nd small left pleural
* d
01 nodul ight mid fung field.
Impre: ral of left chest
tube with tiny left apical
pneumothorax and small left pleural
fluid.
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A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can

be used to produce auto-annotation disease labels

I t: Text R t
PR TR Attention-encoded Text Embedding I—
Word B h ’?AETE
embedding — — T 3
we,t=1..T Wil 5 G Wena ] §
— | [— .. —_— o o
< < g g
g| 5|4 s f = |
=1 T wy! w: o 3
3 o, Bt s mERm B
Use common CNN networks 23| |82 N\ AnkH
Fa 9 3 @ g
to generate feature 22y o [ X ||| @ | x ap [*| X z| | &
. . &3 o2 - 2
representation of image data 82| |&¢ 9 L1 | =
s 23 9o ? gr 8
" h | Lsw-car
Saliency Welghted Global Average Poolmg

Wang et al. TieNet: Text-lmage Embedding
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings
ical small
ne: nd small left pleural
* d
01 nodul ight mid fung field.
Impre: ral of left chest
tube with tiny left apical
pneumothorax and small left pleural
fluid.
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A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can

be used to produce auto-annotation disease labels

Input: Text Report " ]
. R Attention-encoded Text Embedding [
Word h ’?AETE
embedding 3
: wet=1..T G Wena ] 5
*Dashed box for training onl;— o » 2 E zj-_
=3 3
Input: Image ? > s / '__f_‘ %’ : ’;
Use LSTM to process RERIES L wrl L & L %
e = = g0
3 = >
sequence of text data Fo s3] . 2112
. . zZ > 8 3 g
embedding representations 22| |32 =12
- X 2
3 =8
\ | Ksw-car
Saliency Welghted Global Average Poolmg

Wang et al. TieNet: Text-lmage Embedding
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings
ical small
ne: nd small left pleural
* d
01 nodul ight mid fung field.
Impre: ral of left chest
tube with tiny left apical
pneumothorax and small left pleural
fluid.
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A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can
be used to produce auto-annotation disease labels

Input Text Report l

Attention-encoded Text Embeddmg
Word h 1 B ’?AETE

embedding ol — 1 — )
we,t=1..T 5 B _’ Ja—’_‘ G Wend ] §
*Dashed box for training only ; ; e — > E zj-_
Input: Image Q ‘_); s /'___r_ ’__r ; g E
3 (=] WsmrlE : WIE WT [ 7
i (58| == ! e 13115
Imag_e datg is an 51|58 z -
additional input to the HIIEE N X ar *[ X 3| &
) 7 3 (<) i
LSTM at each time step HIE ; \\: gl/qr -
. . = 0% Lo

(with soft-attention ] W $ Lew-onr

Welg htlng) Saliency Welghted Global Average Poolmg
Wang et al. TieNet: Text-lmage Embedding * 9o P

Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings

Findings: left apical s \.|I|
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A recurrent network approach for combining multimodal data

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can

be used to produce auto-annotation disease labels

Input Text Report

Attention-encoded Text Embedding I—

H Word h h AETE
; embedding — — T 3
% wit=147T Wil=>| 15 P Wenall I £
*Dashed box for training onl;— o 41— = - gv_
Input: Image o s - H
3| |881° o ran -";3;' AREE
i o 3 2 L Wstard cwal LW (he e
Final fully-connected £3| |82 AN HE
. 29 l4S 3 - &
layer fusion and Y L a |*x| X e+l x LRIF | ¢

T . T3 o 2
prediction of disease s§| |82 x gl/qr L 1] =
labels 7| [°% ) P -
\ | q4sw-capr
Saliency Welghted Global Average Poolmg

Wang et al. TieNet: Text-lmage Embedding
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.
CVPR, 2018.

Summary of findings
ical small
ne: nd small left pleural
* d
01 nodul ight mid fung field.
Impre: ral of left chest
tube with tiny left apical
pneumothorax and small left pleural
fluid.
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Another direction of research: learning multimodal embedding spaces

Hsu et al. 2018:

- Learn mapping from images and text to vectors in the same embedding space, such that images are

embedded closer to their corresponding reports than other reports, and vice versa.

- Can be used for e.g. cross-domain retrieval

DenseNet121
Joint
Embedding
Space

Text

worsening opacities in

avgpool ﬂPCA m @
U % | (1) Supervised: EA

TextFeatwe @ | (2) Unsupervised: Adv
(3) Semi-supervised: EA + Adv

the lung bases NAME W
reflect worsening TF-IDF
atele( Paper to review - sycyeung@gmail.com - Gmail
i
Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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Another direction of research: learning multimodal embedding spaces

Hsu et al. 2018:

Learn mapping from images and text to vectors in the same embedding space, such that images are

embedded closer to their corresponding reports than other reports, and vice versa.
- Can be used for e.g. cross-domain retrieval

DenseNet121
Joint
Embedding
ﬂ Space
avgpool PCA m_
/ U (1) Supervised: EA
s “- (2) Unsupervised: Adv
£ Text Feature
Image-specific - o — (3) Semi-supervised: EA + Adv
. worsening opac es 1in
pl’OCGSSIng the lunggbages NAME w
reflect worsening TF-IDF
atele( Paper to review - sycyeung@gmail.com - Gmail @
i
Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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Another direction of research: learning multimodal embedding spaces

Hsu et al. 2018:

- Learn mapping from images and text to vectors in the same embedding space, such that images are
embedded closer to their corresponding reports than other reports, and vice versa.
- Can be used for e.g. cross-domain retrieval

DenseNet121

Joint
/ Embedding
Space

avgpool ﬂPCA
26—

} (1) Supervised: EA
= (2) Unsupervised: Adv
11 Text Feature
Text-s pe.CIfIC — T:;tcmes — () Semi-supervised: EA + Adv
pl’OCGSSI ng the lunggbases NAME | 4

reflect worsening

atele( Paper to review - sycyeung@gmail.com - Gmail
—_—

if

Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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Another direction of research: learning multimodal embedding spaces

Hsu et al. 2018:

- Learn mapping from images and text to vectors in the same embedding space, such that images are
embedded closer to their corresponding reports than other reports, and vice versa.
- Can be used for e.g. cross-domain retrieval

DenseNet121
Joint
Embedding

Space
avgpool r} PCA

| (1) Supervised: EA
Mapping to joint . —texereme | | | (2) Unupervised: Adv
embed dlng e (3) Semi-supervised: EA + Adv
the lung bases NAME
1 il
S pa Ce ;ie 1:'5’:;?2‘53:”3’9. sycyeung@gmail.com - Gmail

Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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Another direction of research: learning multimodal embedding spaces

Hsu et al. 2018:

- Learn mapping from images and text to vectors in the same embedding space, such that images are
embedded closer to their corresponding reports than other reports, and vice versa.

- Can be used for e.g. cross-domain retrieval Different loss objectives can

be used to encourage desired
DenseNet121 / embedding space

Joint . .
Embedding relationships
ﬂ Space
avgpool PCA m @
U % || (1) Supervised: EA
Taxt Fdtirs “#1{ (2) Unsupervised: Adv

Text

(3) Semi-supervised: EA + Adv

worsening opacities in
the lung bases NAME
reflect worsening

Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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Categorizations of multimodal models

‘ Feature
’ I Prediction
Model : : @) Extracted Feature
3 ‘ M Modality 1
' Neural Neural ! .
QOOOOTTT | vt || e, | |9 Madaiy2

@sEe oD 2 @ese oo = e

Early Fusion — Type | Joint Fusion — Type |

’

Model
%% Model 1 Model 2
Early Fusion — Type I } Joint Fusion — Type Il ‘ Late Fusion

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Categorizations of multimodal models

@ Feature
Early fusion: F [ Prediction

@ Extracted Feature
concatenate / Model o

combine data cooo—— Junel ) So | ) Modaity 2
before any model m | | W Output
processing_ ‘ [I.'_t.:[] @m

Includes using Early Fusion — Type | Joint Fusion — Type |
extracted features |

as input, if model 7
gradients are not ’
backpropagated to
update feature

Model 1 Model 2

extractor
parameters @S8® OO0

Early Fusion — Type I ‘ Joint Fusion — Type Il Late Fusion

Model

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Categorizations of multimodal models

@ Feature

F [ Prediction

Model @ Extracted Feature
M Modality 1

‘ Neural Neural ! .
Joint fusion: Both @OOS OO | ewwr | | ek || Vo2
) - : : Output
modality-specific @ese o0 2 @ese Cooo

components (with
learnable

parameters) and /
: Loss

Early Fusion — Type | Joint Fusion — Type |

combined-modality

components within ’ |
the model, that are Model |
upddatﬁ? inng % | m&:‘::?& @f.mm” mmm
model training |
Early Fusion — Type I ‘ Joint Fusion — Type Il Late Fusion

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Categorizations of multimodal models

Late fusion:
Main learnable
model
components are
only model

’

Model

Neural Neural
Network 1 Network 2

Iﬁ@m @86® COTT

Early Fusion — Type | ‘ Joint Fusion — Type |

Lossf %

specific.
Individual
modality outputs
are then
aggregated.

—

Model

‘ Neural
‘ Network

/%

Early Fusion — Type I } Joint Fusion — Type Il

@ Feature

B Prediction

@ Extracted Feature
M Modality 1

[7] Modality 2

M Output

Model 1 Model 2

@88 CUT0)

Late Fusion

Huang et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 2020.
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Q: What kind of fusion was this model?

- Havaei et al.: brain tumor
segmentation from multimodal
MR images

64x24x24 64x21x21 \
T1 ‘ ‘ J | ‘ ‘ . 224x21x21
: : Output
Input Conv 7x7 + Conv 3x3 + Sx1x1
4x33x33 Maxout + Maxout + .
Pooling 4x4 Pooling 2x2 T :
1
_—/ : Conv 21x21 +
1 1 Softmax
Conv 13x13 + Concatenation /
# Parameters 651,488 Maxout 160x21x21

Havaei et al. Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis, 2016.
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Q: What kind of fusion was this
model?

Wu et al. 2019:

- Binary classification of breast
malignant and benign findings

- Model based on ResNet architecture

- Multi-view network (different views can
be considered different modalities)

Wau et al. Deep Neural Networks Improve Radiologists’ Performance in Breast
Cancer Screening. IEEE Trans Med Imaging, 2019.

left breast left breast right breast right breast
-------------------- I----------I'-—--'--,--l
: malignant / l- benign / :: malignant / :: benign / '
| not malignant il notbenign 1} not malignant 1, not benign
_____ r-_-_ -____f____l__--_f---_lh____ -1

average ][ average ][ average average

[softmax] [softmax] Loftmax] softmax| [softmax| [softmax| |softmax isoftmax'

[ fully connected layer ]{ fully connected layer ]

I i

[ concatenation ] [ concatenation
average average average average
pooling pooling pooling pooling

ResNet-ZZ ResNet-Zz ResNet 22 ResNet 22

L-MLO R-MLO
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Q: What kind of fusion was this model?

Wang et al. 2018:
- Jointly process chest x-rays and associated reports to produce disease labels that can

be used to produce auto-annotation disease labels

Input: Text Report " N
P “ | Attention-encoded Text Embedding |7
I . Word h T h XAETE
embedding 0 — — T 3
w,t=1..T —’ G G Wend 5
= —p [ |— e — [ Fl 1
training only g g o g
= P
Input: Image 9 > E /t__ 2 ,__t '__f, E g
2} ' ’ ' . ' H g2
o3 <32 L Wstard LW \ i Wri R
G O 8 = 3 gg
», =3 - 0 =) m
E2 322 |- ¥ X ¥ X * Z g
a = &
% Z > & %o z ar X A 3
=93 o 8
w3 Oz
28 X = 91 L 4
z o g @
<] x 2 9o T 2
\ | Ksw—cap
l Saliency Weighted Global Average Pooling I
ar yys

Summary of findings

Findings: left apical small
pneumothorax and small left pleural
effusion remains. unchanged
nodular opacity right mid lung field.
Impression: removal of left chest
tube with tiny left apical
pneumothorax and small left pleural
fluid.

Wang et al. TieNet: Text-lmage Embedding * gr =
Network for Common Thorax Disease
Classification and Reporting in Chest X-rays.

CVPR, 2018.
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Back to learning multimodal embedding spaces

Hsu et al. 2018:

- Learn mapping from images and text to vectors in the same embedding space, such that images are
embedded closer to their corresponding reports than other reports, and vice versa.

- Can be used for e.g. cross-domain retrieval Different loss objectives can

be used to encourage desired
DenseNet121 / embedding space

Joint

Embedding relationships
ﬂ Space
avgpool PCA m @
U ; (1) Supervised: EA
Toxt Text Feature (2) Unsupervised: Adv
(3) Semi-supervised: EA + Adv
worsening opacities in
the lung bases NAME W
reflect worsening TF-IDF
atele( paper to review - sycyeung@gmail.com - Gmail @
i
Distributed Embeddings

Hsu et al. Unsupervised Multimodal Representation Learning across Medical Images and Reports. NeurlPS ML4H, 2018.
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A little more: learning multimodal embedding spaces through contrastive

learning

t“ Image v
_—
Xo Encoder f v h’v v
Heat size is enlarged... t g
u
— U o~ Text
Xy Clear consolidation at... — 54y Encoder hu u
No abnormality seen ...
Zhang et al. 2020.
Image Encoder Global Representation Learning
I ‘ )
Global |Tatge
L Repr Learning representation
1 Image regions and Word-based
words similarity matrix attentioned weighted

Reshape image features

Aggregate word features

Text E

increased

right

!

image representations

Huang et al. 2021.

Serena Yeung

g [
—_— — — DEEm |
[EEE ]
Project to T ] Global
multimodal ol oetliee contrastive
semantic space l € "Igzss""e loss
EEE |
[Eooo) v
[
[EEEe=)
Word representation
Global text
rep i

BIODS 220:

‘Te\xt‘

Pepper the
aussie pup

’E
D

|

|

|

y

Radford et al. 2021.

Al in Healthcare

T T, T3 N,
—> h LTy | Ty | 1Ty LTy
> b LT | Ty | 1Ty Iy Ty
> I LTy | I3T, | I3Ts I3 Ty
> Iy INTy | INTy [ InT3 InTn
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using

paired training data of inputs with corresponding ground truth labels for the desired task
(e.g., manual class labels or EHR-obtained labels).
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using
paired training data of inputs with corresponding ground truth labels for the desired task
(e.g., manual class labels or EHR-obtained labels).

Self-supervised learning does not directly train a model to perform the desired
prediction task. Instead, it generates supervisory training signal from raw data itself to
learn a good feature encoder for the data type. No external labels (e.g, manual class
labels) are used during self-supervised training. Then, this feature encoder can be
useful for downstream tasks, such as initializing and fine-tuning a prediction model with
much less labeled data needed.
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To understand contrastive learning, first understand self-supervised learning

Traditional supervised learning trains a model to perform a prediction task, using
paired training data of inputs with corresponding ground truth labels for the desired task
(e.g., manual class labels or EHR-obtained labels).

Self-supervised learning does not directly train a model to perform the desired
prediction task. Instead, it generates supervisory training signal from raw data itself to
learn a good feature encoder for the data type. No external labels (e.g, manual class
labels) are used during self-supervised training. Then, this feature encoder can be
useful for downstream tasks, such as initializing and fine-tuning a prediction model with
much less labeled data needed.

Effective way to tackle challenges of limited labeled data! Related to earlier discussion on pre-training

on larger datasets and transfer learning, now we can also use self-supervised learning to pre-train on
larger amounts of unlabeled data from the same domain.
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives:

-90 degrees
rotation

Innate relationship objective
E.g., predict rotation angle (or some
other innate property) of an image

Figure credit: Mars Huang
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives:

-90 degrees
rotation

Model

- gl

Innate relationship objective

E.g., predict rotation angle (OI’ some Self.prediction objective
other innate property) of an image Mask parts of input data and
Figure credit: Mars Huang predict these parts
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To understand contrastive learning, first understand self-supervised learning

Some common types of self-supervised learning objectives:

Minimize distance

-90 degrees
rotation

Model

- Pagll

Innate relationship objective Contrastive objective

E.g., predict rotation angle (or some Self-prediction objective Different views of the same input should
other innate property) of an image Mask parts of input data and have more similar representation to each
Figure credit: Mars Huang prediCt these partS other than with a different inpUt
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To understand contrastive learning, first understand self-supervised learning

_ _ o Can have varied formulations of these
Some common types of self-supervised learning objectives: objectives within each type

Minimize distance

-90 degrees
rotation

Model

- Pagll

Innate relationship objective Contrastive objective

E.g., predict rotation angle (or some Self-prediction objective Different views of the same input should
other innate property) of an image Mask parts of input data and have more similar representation to each
Figure credit: Mars Huang prediCt these partS other than with a different inpUt
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SImCLR: a common approach for contrastive self-supervised learning

Minimize distance

Contrastive objective
Different views of the same input should
have more similar representation to each

other than with a different input
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SImCLR: a common approach for contrastive self-supervised learning

SimCLR formulation

Minimize distance

Maximize agreement

Zz < B 23
90)] o0
h; <— Representation —> h;

Contrastive objective
Different views of the same input should
have more similar representation to each

other than with a different input

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Minimize distance

Contrastive objective
Different views of the same input should
have more similar representation to each

other than with a different input

SimCLR formulation

Maximize agreement

Zz < B 23
90)] o0
h; <— Representation —> h;

Chen et al. 2020

Serena Yeung

BIODS 220: Al in Healthcare
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SImCLR: a common approach for contrastive self-supervised learning

SimCLR formulation

Minimize distance

Maximize agreement

Zz < B 23
90)] o0
h; <— Representation —> h;
f() fC)
. . . N 7
Contrastive objective
Different views of the same input should Transformation Transformation
have more similar representation to each t Input ¢

other than with a different input
Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Minimize distance

Transformation set:
random crop (w/ flip
and resize), color

SimCLR formulation

Maximize agreement

distortion, Gaussian % < > Zj
blur

90)] o0

h; <— Representation —> h;
f() fC)

. . . N 7
Contrastive objective
Different views of the same input should Transformation Transformation
have more similar representation to each t Input ¢

other than with a different input

Serena Yeung

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Transformation set:
random crop (w/ flip
and resize), color
distortion, Gaussian
blur

Paper tested a variety of other transformations:

Rz

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

SimCLR formulation

Minimize distance

Maximize agreement

Z; - 23
90)] o)
h; <— Representation —» h;
f() f()
Contrastive objective /
Different views of the same input should Transformed

have more similar representation to each versions of input Input

other than with a different input
Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

SimCLR formulation

Minimize distance

Maximize agreement
Zq, < > 2j

,I

i <— Representation —» h;

Encoder network f
(same model applied
to both image
transformers)

Contrastive objective
Different views of the same input should
have more similar representation to each Input
other than with a different input

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

SimCLR formulation

Minimize distance

Maximize agreement
Projection head Z; - > Zj

(MLP w/ one

hidden layer), 9 ) T - TQ()
same network .
applied toboth < hi <— Representation —> h;

representations
h_ i,h_j

Contrastive objective
Different views of the same input should
have more similar representation to each

other than with a different input

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation
Minimize distance
Maximize agreement
z'L < P 23
90)] o0
h; <— Representation —> h;

Contrastive objective
Different views of the same input should
have more similar representation to each Input

other than with a different input

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

OO _ Maximize agreement ‘
i Z; = > 2

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

exp(sim(z;, 2;)/7)

S Lk exp(sim(z;, 2x) /7)

Ei,j = — log
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

O . Maximize agreement .
' g Zq, < z Vi

[\  A—

Y

Contrastive loss can take the form of a familiar cross-entropy loss!

exp(sim(z;, 2;)/T)

S Lk exp(sim(z;, 2x) /7)

Ei,j = — lOg

Compute loss over a minibatch of N examples. Generate two augmented views of each example, resulting in 2N data
points total. Now in the contrastive loss, we wish for a pair of data points (i,j) corresponding to augmentations of the
same example to have closer representation similarity than with other data points generated from different examples.
Use a cross-entropy formulation: given data point i, similarity with data point j should have higher score than with all
other points such that it is “correctly classified”!
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

O . Maximize agreement .
' g Zq, < z Vi

[\  A—

Y

Contrastive loss can take the form of a familiar cross-entropy loss!

Loss for a pair of
data points (i,j)

\E

exp(sim(z;, 2;)/T)

S Lk exp(sim(z;, 2x) /7)

i,j = —log

Compute loss over a minibatch of N examples. Generate two augmented views of each example, resulting in 2N data
points total. Now in the contrastive loss, we wish for a pair of data points (i,j) corresponding to augmentations of the
same example to have closer representation similarity than with other data points generated from different examples.
Use a cross-entropy formulation: given data point i, similarity with data point j should have higher score than with all
other points such that it is “correctly classified”!
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

OO _ Maximize agreement ‘
i Z; = > 2

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

Similarity score between final-layer
representations of i and j

exp(sim(z;, z;)/7)

S Lk exp(sim(z;, 2x) /7)

Ei,j = — log
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

OO _ Maximize agreement ‘
i Z; = > 2

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

Similarity score between final-layer
representations of i and j

exp(sim(z;, z;)/7)

S Lk exp(sim(z;, 2x) /7)

Ei,j = — log

Use cosine similarity  sim(u,v) = u'v/||ul|||v]|
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

OO _ Maximize agreement ‘
i i Z; = > Zj

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

Exponentiate

exp(sim(z;, z;)/7)

S Lk exp(sim(z;, 2x) /7)

ei,j = — log

From here, looks very similar to . 1 e’vi

softmax loss (generalized cross Lsoftmaz = E : — log( py )
. M ~ > . eSi

entropy to multiple classes) i J
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

O . Maximize agreement .
i i Z; = > Zj

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

Detail: Loss uses a

. temperature hyperparameter,
eXp(Slm(Zi, Zj )/7' controls peakiness of final

lij = —log oN . probability distribution for
Zkzl 1 [k+#1] eXP(Slm(Zi, zk)/T) better learning dynamics
From here, looks very similar to I . 1 1 e’vi
softmax loss (generalized cross  ~Softmaz = 5 ¢ E : — log( S e )
. . €77
entropy to multiple classes) i J
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

OO _ Maximize agreement ‘
i i Z; = > Zj

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

exp(sim(z;, z;)/7)

l: . = —1 Normalize over scores of
b:J 08 ZZN 1 ex (sim(z P )/7-) similarity between i and all
k=1~ [k#1] p 2y <k other data points in the
minibatch (2N total)
From here, looks very similar to I . 1 1 e’vi
softmax loss (generalized cross Softmaz — M E : - Og( Z eSi )
entropy to multiple classes) 1 J
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation
Minimize distance

OO _ Maximize agreement ‘
i i Z; = > Zj

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

Negative log likelihood,
as in softmax /

cross-entropy \ exp(sim(zi, Zj ) / 7')

¢ =—log :
! SN Lot exp(sim(2;, 2&) /7)

From here, looks very similar to . 1 e’vi

softmax loss (generalized cross Lsoftmaz = E : — log( py )
. M ~ > . eSi

entropy to multiple classes) i J
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation

Minimize distance

O . Maximize agreement .
i i Z; = > Zj

[\  A—

Contrastive loss can take the form of a familiar cross-entropy loss!

exp(sim(z;, 2;)/T)

S Lk exp(sim(z;, 2x) /7)

Ei,j = — log

For a minibatch of N examples (2N augmented data points), compute this loss over all corresponding pairs
(i,j), as well as (j,i) for symmetry of the loss, and then average these individual loss terms (2N terms total)

L= [6(2k—1,2k) + £(2k, 2k—1)]
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation
Minimize distance
Maximize agreement
z'L < P 23
90)] o0
h; <— Representation —> h;

Contrastive objective
Different views of the same input should
have more similar representation to each Input

other than with a different input

Chen et al. 2020
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SImCLR: a common approach for contrastive self-supervised learning

Contrastive loss SimCLR formulation
Minimize distance
Maximize agreement
z'L < P 23
90)] o0
h; <— Representation —> h;

After self-supervised training, can fine-tune the encoder f on smaller labeled
datasets. Can also directly extract learned representations h for downstream tasks.
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. ) i ConVIRT (multi-modality)
Multimodal contrastive learning

SimCLR (single-modality)

Maximize agreement

fu

h; <— Representation —»

Text
Encoder

— Xy

Clear consolidation at...

BIODS 220: Al in Healthcare Lecture 8- 65
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. ) i ConVIRT (multi-modality)
Multimodal contrastive learning

¥ F
In single-modality < <
contrastive learning,
SimCLR (single-modality) representations h are
o shared-encoder >
. Maximize agreement - outputs of two different X
L g augmentations of the =
a(-) I same input. _Want E
augmentations
h; <— Representation —» h; corresponding to the "%
same input to be more E:

1{0) similar to each other
than to those
corresponding to
different inputs

>
+S5

£

. b

No abnormality seen ...

Heat size is enlarged...
Clear consolidation at...
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. ) i ConVIRT (multi-modality)
Multimodal contrastive learning

In multi-modality = -

contrastive learning,

SimCLR (single-modality) representations h are
o encoder outputs of the > =

. Maximize agreement same concept (e.g. ‘ _ [

Z; = > . . S S

radiology image and

. . corresponding report), > s
al )T ©) from two different = =
h; <— Representation —> h; modality-specific = =
encoders. Want these E: B:

110) to be more similar to
each other than with :

. b

S
14

non-corresponding
images / reports.

ty

No abnormality seen ...

Clear consolidation at...

-§°
<
5
-
&
£
2
b5}
=

Serena Yeung BIODS 220: Al in Healthcare Lecture 8- 67



ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Image Yo
Encoder f'U h‘v e ‘e(v—)u)
[ Heat size is enlarged... ] t
Xu [ ‘Clear consolidation at... ] —u> 5'( i T e » e (u_H))
[ No abnormality seen ... ]

Zhang et al. 2020.
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ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Image Yo
Encoder f'U h'U e 'e(v —)U)
[ Heat size is enlarged... ] t
Xu [ ‘Clear consolidation at... ] —u> 5'{ i T e » E (u_H))
[ No abnormality seen ... ]

Input image/text data

Zhang et al. 2020.
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ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Image Yo
Encoder f'U h'U e 'e(v —)U)
[ Heat size is enlarged... ]
Xu [ ‘Clear consolidation at... ] T e » E (u_H))
[ No abnormality seen ...

Modality-specific sampling

and transformation
Zhang et al. 2020.

Serena Yeung BIODS 220: Al in Healthcare Lecture 8- 70



ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

2 \ tfv - lmage g'v
xv ' - " x’U Encoder f'U h'U RO~ !e('v -)'LL)
[ Heat size is enlarged... ] t
Xu [ ‘Clear consolidation at... ] _u, 5'( u - ¥ e(u—)v)

[ No abnormality seen ... ] /

Modality-specific encoders: ResNet-50 for images and BERT
(initialized with ClinicalBERT) for text. Only fine-tune last 6

Zhang et al. 2020. layers of BERT encoder during pre-training.
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ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Image Yo
Encoder f'U h'U e 'e(v —)U)
[ Heat size is enlarged... ] t
Xu [ ‘Clear consolidation at... ] —u> 5'{ i T e » E (u_H))
[ No abnormality seen ... ]

Encoded representations of image and text

Zhang et al. 2020.
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ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

N t'U ~ Image Go
va : S xfu Encoder f v hv RO~ 2 e (v —)u)
[ Heat size is enlarged... ]
b tu _ gu
Xu [ Clear consolidation at... ] — oy U] s 4 e (u—)v)
[ No abnormality seen ... ]

Small projection function (MLP) used only during contrastive

learning, not downstream task fine-tuning, as with SimCLR
Zhang et al. 2020.
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ConVIRT

Multimodal contrastive pre-training on 217k image-text from the MIMIC-CXR dataset

Image
Encoder

fo

[ | Heat size is enlarged... ]

by

xu [ Clear consolidation at... ] —_— xu

[ No abnormality seen ... ]

47" = —log ;Xp“vi’ u;)/7) Same contrastive loss on projection function outputs, as in SImCLR.
Y 1 exp((vi,ux)/7)  “Correct’” matched pairs are now those from the same patient image/text
Zhang et al. 2020. case, different from the two augmented views of the same input in SImCLR.
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GLORIA

Many radiology reports are long — associating all parts of a report equally with all regions of an image
may be too coarse

Huang et al. 2021.
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GLORIA

Many radiology reports are long — associating all parts of a report equally with all regions of an image
may be too coarse

Extension to ConVIRT: beyond global contrastive loss, jointly train with a localized contrastive loss between
words and attention-weighted regions of images (learn the attention weighting, as in previous lectures)

Image Encoder v / \ Global Representation Learning
e— i
— —

»H Global image
Localized Representation Learning / * ISprecentation

Image regions and Word-based

words similarity matrix attentioned weighted
image representations T
> €]
Reshape image features = i ﬁ] _’—_ '
(oo
Project to — Global
multimodal e-l * clg?\(;ra:szt?\?e contrastive
Aggregate word features semantic space l loss a5
Text Encoder I {
z EEEE A\
"
- . EEEE
Word representation
Global text
representation
Huang et al. 2021.
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CLIP

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million
image-text pairs

1. Contrastive pre-training

peppgr the Toxt
AL Encoder 1 1 1 1
7 3 T3 Ty
- I I LT, LTy - I,-Ty
1 LT IpT, I I, Ty
- ) —
"y
| Image
‘} Encoder I3 I T Il Tl BT Ty
7
Iy IyT, IyT, INTs Ty

Radford et al. 2021.

Serena Yeung BIODS 220: Al in Healthcare Lecture 8- 77




CLIP

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million
image-text pairs

1. Contrastive pre-training

Dataset generated by searching for
image-text pairs on the web, where text

Text

e IR comes from a base query list of 500,000
oL o - T, queries comprising all words occurring at
least 100 times in the English version of
— & LT LT LT e L Wikipedia. This is augmented and

2w | processed in various ways, see paper for
g T details.
"? i I—’ EI,QSSZ, — 1 Iz I3Ty IgT, IgTy - Izl

— Iy Iy InT, InTs - IyTy

Radford et al. 2021.
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CLIP

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million
image-text pairs
Transformer-based, trained from scratch

1. Contrastive pre-training /

peppgr the Toxt
AL Encoder 1 1 1 1
7 3 T3 Ty
- I I LT, LTy - I,-Ty
1 LT IpT, I I, Ty
- ) —
"y
| Image
‘} Encoder I3 I T Il Tl BT Ty
7
Iy IyT, IyT, INTs Ty

Radford et al. 2021.
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CLIP

Multimodal contrastive learning similar to ConVIRT, but now on very large dataset of 400 million
image-text pairs

1. Contrastive pre-training

pepper the
aussie pup >

o

Radford et al. 2021.

Serena Yeung

Text
Encoder

Image
Encoder

Iy

InT

I T,

I T,

I3y

InT,

LRE

I 75

I3Ts

InTs

II'TN

IZ ‘TN

I3 Ty

InTy

Can be used for zero-shot prediction tasks

2. Create dataset classifier from label text

aphotoof [N Text
a{object}. Encoder

3. Use for zero-shot prediction

.

Image
Encoder

BIODS 220: Al in Healthcare

i I

I

T2 T3 TN

RN
a photo of
adog.
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Complementary to self-supervision: weak supervision is another
class of methods to improve learning in limited label scenarios

- Machine learning paradigm where labels for supervised training are obtained
from noisy or imprecise (but more easily accessible) sources

- One possibility is through corresponding data available in a different modality!
(e.g., radiology reports as a source of weak supervision for radiology images)
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Weak supervision from radiology reports

Can use rule-based approaches for obtaining labels from free-text radiology

reports

Indication: Chest pain. Findings:
Mediastinal contours are within
[hormad) 1imits. Heart size is
within (normal) Timits. [No) focal
consolidation, [pneumothorax or
pleural effusion. Impression: (No
acute cardiopulmonary
abnormality.

Normal Report

Figure credit: Nishith Khandwala et al., 2017.

def LF_pneumothorax(c):
if re.search(r’pneumo.%’, c.report.text):
return "ABNORMAL"

def LF_pleural_effusion(c):
if "pleural effusion" in c.report.text:
return "ABNORMAL"

def LF_normal_report(c, thresh=2):
if len(NORMAL_TERMS.intersection(c.
report.words)) > thresh:
return "NORMAL"

LFs

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
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How can we produce good labels from noisy sources?

One approach: Aggregate multiple rules (labeling functions) with majority voting

Labeling Functions

Indication: chest pain. Findings: _
Mediastinal contours are within ﬁ

[normal) 1imits. Heart size is

w1th1nm [normal) Timits. [NoJ focal

consolidation, [pneumothorax or
[p1eural effus1ori Impression:

acute cardiopulmonary N
abnormality.

Figure credit: Nishith Khandwala et al., 2017.
Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.

Majority Vote
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How can we produce good labels from noisy sources?

More sophisticated approach: learn models for how to best aggregate noisy
labeling functions!

Labeling Functions Generative Model

Indication: Chest pain. Findings: _ :> @

Mediastinal contours are within f

(normal) 1imits. Heart size is i
wienin Gommal Hinics. o foce) | gl [C_)] — I — (1)

consolidation, [pneumothorax or

(pTeural effusion. Impression: (No

acute cardiopulmonary N
abnormality. ':>

Figure credit: Nishith Khandwala et al., 2017.
Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
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How can we produce good labels from noisy sources?

More sophisticated approach: learn models for how to best aggregate noisy
labeling functions!

Labeling Functions Generative Model

Indication: chest pain. Findings: _ :> @
Mediastinal contours are within f

(normad) 1imits. Heart size is i
wienin ormal Vinies. b ocat | gy B — R — ) oy
consolidation, [pneumothorax or

(pleural effusion. Impression: (Ng

acute cardiopulmonary %1 N
abnormality. -/

CNN
Figure credit: Nishith Khandwala et al., 2017.

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
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“Data programming” paradigm for weak supervision

“Indication: Chest

pain. Findings: No

focal consolidation
or pneumothorax.”

gef LF_pneumo(x):

1f search(r’'pneunc.*’, X):
return "ABNORMAL™

get LF_ontology(x):

1f DISEASES & X.words:
return "ABNORMAL™

Auxiliary modality xff )

gef LF_short_report(x):
1f len(X.worgs) < 15:
return “"NORMAL"

LABELING FUNCTIONS (LFs)

Probabilistic g
training label C

I.STM TEXT o
Target modality x,

GENERATIVE
MODEL MODEL

TARGET MODALITY
END MODEL

Dunmon et al. Cross-Modal Data Programming Enables Rapid Medical Machine Learning, 2020.
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Summary

Today we covered:

- Multimodal data and models

- Self-supervised learning (including contrastive learning)
- Both single-modality and multi-modality

-  Weakly supervised learning
Next time:

- More on Transformers and Multimodal Models
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