Review Session:
Deep Learning Fundamentals

Serena Yeung BIODS 220: Al in Healthcare

What we will cover today

- Deep learning basics
- Defining a neural network architecture
- Defining a loss function
- Optimizing the loss function

- Model implementation using deep learning frameworks

- Neural network design choices

Serena Yeung BIODS 220: Al in Healthcare

What we will cover today

- Deep learning basics
- Defining a neural network architecture
- Defining a loss function
- Optimizing the loss function

- Model implementation using deep learning frameworks

- Neural network design choices

Serena Yeung BIODS 220: Al in Healthcare

What we will cover today

What you are expected to know for the class:
- Definition and conceptual understanding of how the main components of different types of
neural networks work
- Framework of training a deep learning model
- Conceptual understanding and trade-offs among design choices
- Good practices and techniques for effectively developing deep learning models for different
biomedical tasks

What is not expected:
- Remembering / deriving complicated mathematical derivations of gradients, backpropagation,
specific optimization methods (Adam, etc.), learning rate schedulers, etc.
- Mathematical details of design choices such as batch normalization, dropout (scaling), etc.
Instead you are expected to understand them conceptually, understand trade-offs, and
understand how to make good choices about using them

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Machine learning framework

Data-driven learning of a mapping from input to output

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Machine learning framework

Data-driven learning of a mapping from input to output

Traditional machine learning approaches

Input ‘ Feature ‘ Machine learning ‘ Output

extractor model

(e.g., | & \) (e.g., colorand (e.g., support vector machines (e.g., presence or
t ' ' texture histograms) and random forests) not or disease)

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Deep learning (a type of machine learning)

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Deep learning (a type of machine learning)

Traditional machine learning

Feature ‘ Machine learning ‘ Output

extractor model
(e.g. (e.g., color and (e.g., support vector machines (e.g., presence or
texture histograms) and random forests) not or disease)

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Deep learning (a type of machine learning)

Traditional machine learning

Input ‘ Feature ‘ Machine learning ‘ Output

; extractor model
(e.g., | y 1 \) (e.g., colorand (e.g., support vector machines (e.g., presence or
t j texture histograms) and random forests) not or disease)

Deep learning

Input) Deep Learning Model mm) Output
— i |

(e.g., :) (e.g., convolutional and (e.g., presence or
t j recurrent neural networks) not or disease)

Serena Yeung BIODS 220: Al in Healthcare R1-9

From lecture: Deep learning (a type of machine learning)

Traditional machine learning

Input ‘ Feature ‘ Machine learning ‘ Output

; extractor model
(e.g., | / y \) (e.g., colorand (e.g., support vector machines (e.g., presence or
L = 1 texture histograms) and random forests) not or disease)

Directly learns what are useful (and better!)

Deep learning ___— features from the training data

Input) Deep Learning Model mm) Output

ol T
(e.g., | / ,. ') (e.g., convolutional and (e.g., presence or
L - \ recurrent neural networks) not or disease)

Serena Yeung BIODS 220: Al in Healthcare R1- 10

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

\» all inputs of a layer are connected to

all outputs of a layer

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

Output: § = wix1 + WoZo + w3x3 + b

T w1 —wlz+b

s
O
5| §
<

Serena Yeung BIODS 220: Al in Healthcare

From lecture: let us consider a regression task

Let us consider the task of regression: predicting a single real-valued output from input data

Model input: data vector * = [:1:1, T2, ... :L'N] Model output: prediction (single number) ¢

Example: predicting hospital length-of-stay from clinical variables in the electronic health record

r = [age, weight, ..., temperature, oxygen saturation] g = length-of-stay (days)

Example: predicting expression level of a target gene from the expression levels of N landmark genes

T € 'RN = expression levels of N landmark genes :lj = expression level of target gene

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

Output: § = wix1 + WoZo + w3x3 + b

T w1 —wlz+b

s
O
5| §
<

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

Output: § = wix1 + WoZo + w3x3 + b

T w1 —wlz+b _
bias term (allows
w2 . constant shift)
=2 O 7
w3
T3

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

layer inputs
v Output: § = wiT1 + WaTs + w3x3 + b
layer output(s
Y putts) —wlz+b

\

bias term (allows
constant shift)

8
%)
<

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

layer inputs
v Output: § = wiT1 + WaTs + w3x3 + b
layer output(s
Y putts) —wlz+b

\

bias term (allows
Neural network parameters: constant shift)

W = {[101,’102,’103] 1b}

8
%)
<

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

layer inputs
v Output: § = wiT1 + WaTs + w3x3 + b
layer output(s
* bias term (allows
T2 Q g Neural network parameters: constant shift)
W = {[wy, ws, ws], b}
T3 3 _ _
layer “weights” layer bias

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

layer inputs
* Output: :& = W11 + Welo + W3T3 + b
layer output(s
x1 w1 Y put(s) —wlr +b |
* bias term (allows
T2 O g Neural network parameters: constant shift)
W = {[w1, ws,ws], b}

x h .

’ \ layer “weights” layer bias

Often refer to all parameters together as just
“‘weights”. Bias is implicitly assumed.

Serena Yeung BIODS 220: Al in Healthcare

Defining a neural network architecture

Ouir first architecture: a single-layer, fully connected neural network

For simplicity, use a 3-dimensional input (N = 3)\ all inputs of a layer are connected to
all outputs of a layer

layer inputs
* Output: :& = W11 + Welo + W3T3 + b
layer output(s
x1 w1 Y put(s) —wlr +b |
* bias term (allows
T2 O g Neural network parameters: constant shift)
W = {[wy, ws, ws], b}
I3 h) .
layer “weights” layer bias

Often refer to all parameters together as just

“‘weights”. Bias is implicitly assumed.
Caveats of our first (simple) neural network architecture:

- Single layer still “shallow”, not yet a “deep” neural network. Will see how to stack multiple layers.
- Also equivalent to a linear regression model! But useful base case for deep learning.

Serena Yeung BIODS 220: Al in Healthcare R1- 21

Defining a loss function) w

Output: § = wix, + waxo + w3x3 + b) O
=wlz+b

<

Neural network parameters:

W = {[wlaw2,w3])b}

Serena Yeung BIODS 220: Al in Healthcare

Defining a loss function) w

Output: § = wix, + waxo + w3x3 + b T O w2

=wlz+b

Nad!

Neural network parameters:
W = {[wla wa, ’U)3] 7b}

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

Serena Yeung BIODS 220: Al in Healthcare

Defining a loss function) w

Output: § = w11 + waZs + w33 +b - Q w2

=wlz+b

Nad!

Neural network parameters:
W = {[wla wa, ’U)3] 7b}

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.

Serena Yeung BIODS 220: Al in Healthcare

Defining a loss function) w
Output: ﬁ = W11 + Wolo + W3T3 + b

=wlz+b

S
O
Ik
<>

Neural network parameters:
W = {[wla wa, w3] 7b}

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.
MSE loss for a single example z*, when the prediction is y and the correct (ground truth) output is y

L'W) =@ —y")?

Serena Yeung BIODS 220: Al in Healthcare

Defining a loss function) w
Output: ﬁ = W11 + Wolo + W3T3 + b

=wlz+b

S
O
Ik
<>

Neural network parameters:
W = {[wla wa, w3] 7b}

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.
MSE loss for a single example z*, when the prediction is y and the correct (ground truth) output is y

LY(W) = (§* — y)? <— the loss is small when the prediction is close to the ground truth

Serena Yeung BIODS 220: Al in Healthcare

Defining a loss function) w

Output: § = w11 + waZs + w33 +b - Q w2
=wlz+b

Nad!

Neural network parameters:
W = {[w13w2)w3] 7b}

Loss functions are quantitative measures of how satisfactory the model predictions are (i.e., how “good”
the model parameters are).

We will use the mean square error (MSE) loss which is standard for regression.
MSE loss for a single example x*, when the prediction is y and the correct (ground truth) output is y

LY(W) = (§* — y)? <— the loss is small when the prediction is close to the ground truth

MSE loss over a set of examples i = {1,...,M}: L= % ZLi(W)

Serena Yeung BIODS 220: Al in Healthcare

Optimizing the loss function: gradient descent

Goal: find the “best” values of the model parameters that minimize the loss function

Serena Yeung BIODS 220: Al in Healthcare

Optimizing the loss function: gradient descent

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Serena Yeung BIODS 220: Al in Healthcare

Optimizing the loss function: gradient descent

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

“Loss landscape”: the value of the
loss function at every value of the
model parameters

Bl
RRISTIN AT]
SN]

% (7> "' 4
S

Loss

w1

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

Serena Yeung BIODS 220: Al in Healthcare

Optimizing the loss function: gradient descent

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Main idea: iteratively update the model
parameters, to take steps in the local
direction of steepest (negative) slope,
i.e., the negative gradient

“Loss landscape”: the value of the
loss function at every value of the
model parameters

Loss

w1

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

Serena Yeung BIODS 220: Al in Healthcare

Optimizing the loss function: gradient descent

Goal: find the “best” values of the model parameters that minimize the loss function

The approach we will take: gradient descent

Main idea: iteratively update the model
parameters, to take steps in the local
direction of steepest (negative) slope,
i.e., the negative gradient

“Loss landscape”: the value of the
loss function at every value of the
model parameters

We will be able to use gradient
descent to iteratively optimize the
complex loss function landscapes
corresponding to deep neural
networks!

Loss

w1

Figure credit: https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

The derivative of a function is a measure of local slope.

X. = 2 a_f_
Ex. f(z)== ax—2m

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

1.4
1.2
1.0
0.8
0.6
0.4
0.2

The derivative of a function is a measure of local slope.

X. = 2 a_f_
Ex. f(z)== ax—2m

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

The derivative of a function is a measure of local slope. 1.4
1.2
Ex: f(x)=x2 a—f=2:1; 1.0 of —9
o 0.8 ox 1
06
0.4
0.2
X

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

1.4
1.2
1.0
0.8
0.6
0.4
0.2

The derivative of a function is a measure of local slope.

X. = 2 a_f_
Ex. f(z)== ax—2m

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

1.4
1.2
1.0
0.8
0.6
0.4
0.2

The derivative of a function is a measure of local slope.

X. = 2 a_f_
Ex. f(z)== ax—Qa:

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

Ex. f(z1,22) = 321 +x3° Vfe= 621, 222]

-1.0 -0.5 0.5 1.0

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

1.4
1.2
1.0
0.8
0.6
0.4
0.2

The derivative of a function is a measure of local slope.

X. = 2 a_f_
Ex. f(z)== ax—2x

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

Ex. f(z1,22) = 321 +x3° Vfe= 621, 222]

-1.0 ~-0.5 0.5 1.0

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

v, _(6,2 A

r1=1,2x0=1 T

Serena Yeung BIODS 220: Al in Healthcare

Review from calculus: derivatives and gradients

1.4
1.2
1.0
0.8
0.6
0.4
0.2

The derivative of a function is a measure of local slope.

X. = 2 B_f_
Ex. f(z)== ax—2:r

The gradient of a function of multiple variables is the vector of
partial derivatives of the function with respect to each variable.

-1.0 ~-0.5 0.5 1.0

Ex. f(z1,22) = 321 +x3° Vfe= 621, 222]

The gradient evaluated at a particular point is the direction of steepest ascent of the function.

v, _62 A

r1=1,2x0=1 T

The negative of the gradient is the direction of steepest descent -> direction we want to move
in the loss function landscape!

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:

0L OL OL
ow, w,’ Owg

Viw =

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:
\ For ease of notation, rewrite

8L BL 8L parameter b as wy
VLW - aw 3 aw y eeey aT corresponding to zg = 1:
! 2 N U = woTo + w1T1 + waZs + w3T3

W = {[wo, w1, w2, ws3]}

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:
\ For ease of notation, rewrite

8L BL 8L parameter b as wy

corresponding to xg = 1:
ow,’ Owy’ T Owg ponding fo o

Viw =

, L
7 = woTo + w1T1 + waT2 + wW3Ty
W = {[wo, w1, w2, ws]}

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

W : =W —aVLy

{ %

/) "’,llliﬂiz&.ﬁ :.::.;i:,zi,'@
Sl

LTS
5 3,::..‘ L7 'if L]
/] 'l:‘iﬁ»‘:@:&:@%’*‘" i

S

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:
\ For ease of notation, rewrite

BL 6L 8L parameter b as wy
B'w) aw ’ awK corresponding to zg = 1:
1 2

Viw =

, L
= woTo + w1T1 + waT2 + W3T3

W = {[w(), un, wsa, w;;]}

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

W: =W —aVLy

y [1]] L]
“Step size” hyperparameter (design choice) X i RS elis
indicating how big of a step in the negative
gradient direction we want to take at each update.
Too big -> may overshoot minima.

Too small -> optimization takes too long.

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm: in code

initialize vector of weight parameters to random values
weights = random init(weights dimension)

while True:
evaluate the gradient of the loss function with respect to the weights
weights grad = evaluate gradient(loss_fcn, data, weights)
update the weights in the direction of the negative gradient
weights = weights - step size * weights grad

Serena Yeung BIODS 220: Al in Healthcare

Stochastic gradient descent (SGD)

Evaluating gradient involves iterating over all data examples, which can be slow!

In practice, usually use stochastic gradient descent: estimate gradient over a sample of data
examples (usually as many as can fit on GPU at one time, e.g. 32, 64, 128)

initialize vector of weight parameters to random values
weights = random init(weights dimension)

while True:

sample a batch of data examples
data batch = sample data(data, 128)

evaluate the gradient of the loss function with respect to the weights
weights grad = evaluate gradient(loss fcn, data batch, weights)

update the weights in the direction of the negative gradient

weights = weights - step size * weights grad

Serena Yeung BIODS 220: Al in Healthcare

Loss function:

Optimizing the loss function: L — 4 - o

our example Lo
Over M examples: L = u E L'(W)
x1 w1 '
w2 .
v Qo
T3

Output: § = wix, + waxo + w3x3 + b
—wlz+b
Neural network parameters:

W = {[w1>w21w3] 1b}

Serena Yeung BIODS 220: Al in Healthcare

Loss function:

Optimizing the loss function: L — 4 - o

our example 1 |
Over M examples: L = u Z L'(W)
T w1 ‘
Gradient of loss w.r.t. weights:
w2 .
T2 O w Yy Partial derivative of loss w.r.t. kth weight:
3
oL OL* 9y* N Ny
B = L= 2(p — y)ad

ow,, O Owy
Output: 9 = wix, + weXo + w3x3 + b
=wlz+b

Neural network parameters:

W = {[w1>w2,w3] 1b}

Serena Yeung BIODS 220: Al in Healthcare

Loss function:

Optimizing the loss function: L — 4 - o

our example L

Over M examples: L = i Z L'(W)

T w1 !
Gradient of loss w.r.t. weights:

w2 .

Z2 Q Wa Y chain rule Partial derivative of loss w.r.t. kth weight:
OL* = OL' 9y" I

v = L= 2(p — y)ad

ow,, O Owy
Output: ﬁ = W11 + Wolo + W3T3 + b
=wlz+b

Neural network parameters:

W = {[wlaw2aw3] 1b}

Serena Yeung BIODS 220: Al in Healthcare

Loss function:

Optimizing the loss function: L — 4 - o

our example 1 |
Over M examples: L = i ZL (W)
1 w1 ’
Gradient of loss w.r.t. weights:
w2 .
T2 Q w Yy Partial derivative of loss w.r.t. kth weight:
3
OL* OL* 07° : o
3 = o =2 —y)al
Over M examples Qwy, 07" Owy,
Output: § = wyT1 + WeZy + w3x3 + b \— _ZGL" _229 — ")
T owy, owg,
=w x+b

Neural network parameters:

W = {[wlaw2aw3] 1b}

Serena Yeung BIODS 220: Al in Healthcare

Loss function:

Optimizing the loss function: L — 4 - o

our example 1 |
Over M examples: L = i ZL (W)
T w1 ‘
Gradient of loss w.r.t. weights:
w2 .
T2 Q w Y Partial derivative of loss w.r.t. kth weight:
3
oL 9L 09° i L
3 = o =2 —y)al
owr 07" Owg
R S b aL’
Output: Y = W11 + Woko + W3T3 + il Z il ZQ (¢ — y
T a’wk 8wk
=w z+b
Full gradient expression:
Neural network parameters: 5L oL]
W = {[w1, ws,ws], b} Viw= lw_o’ ' ws] —MZ;Z(y —y)e

Serena Yeung BIODS 220: Al in Healthcare

Gradient descent algorithm

Let the gradient of the loss function with respect to the model parameters w be:
\ For ease of notation, rewrite

BL 6L 8L parameter b as wy
B'w) aw ’ awK corresponding to zg = 1:
1 2

Viw =

, L
= woTo + w1T1 + waT2 + W3T3

W = {[w(), un, wsa, w;;]}

Then we can minimize the loss function by iteratively updating the model parameters (“taking steps”) in
the direction of the negative gradient, until convergence:

W: =W —aVLy

y [1]] L]
“Step size” hyperparameter (design choice) X i RS elis
indicating how big of a step in the negative
gradient direction we want to take at each update.
Too big -> may overshoot minima.

Too small -> optimization takes too long.

Serena Yeung BIODS 220: Al in Healthcare

Remember from lecture: a two-layer fully-connected neural network

Output: h = o(W'z + b')
i = W2h + b?

-1 1 1 1

N ot ot] IR
W+ = w%1 w%2 'w%3 b = b%
W31 W3y W3z bs

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network o) = !
l1+e @

Output: h =o(W'z +b') N
J = W?2h+ b? /-

Sigmoid “activation
function”

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network

Output: h = o(W'z + b')
i = W2h + b?

Full function expression:
§=W?*c(W'z +b')) +b°

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network o) = !
l1+e @

Output: h =o(W'z +b') =
j = W?2h+ b2 f
Full function expression: /

Q=W2(0'(W1$+b1))+b2 o 2 0 2 4

Sigmoid “activation

Activation functions function”
_ introduce non-linearity into
wi wl, wig bi the model -- allowing it to
Wl — |wl ,wl2 w% pl — b% represent highly complex
%1 % 13 1 functions.
w w w b
| 31 32 33 3

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

You can find these in Keras:

CO m m O n aCtivati O n fu n Cti O n S https://keras.io/layers/advanced-activations/

You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

1 10

Sigmoid RelLU

o(r) = {7e== max (0, x)

o 6 and many
=10 10
more...

-10

10
1
Tanh , Leaky RelLU

tanh(x) - 4 fo max(0.1x, x)
1 — L") 10

10

Serena Yeung BIODS 220: Al in Healthcare

https://keras.io/layers/advanced-activations/

You can find these in Keras:

Common aCtivation funCtionS https://keras.io/layers/advanced-activations/
You will see these extensively, typically after linear or convolutional layers. Typical in modern CNNs
They add nonlinearity to allow the model to express complex nonlinear functions. and MLPs

1 10

Sigmoid RelLU

o(r) = {7e== max (0, x)

o o and many

-10 -10 10
more...

10

10
1
Tanh , Leaky RelLU

tanh(x) - 4 fo max(0.1x, x)
1 — L") 10

Serena Yeung BIODS 220: Al in Healthcare

https://keras.io/layers/advanced-activations/

You can find these in Keras:

CO m m 0 n aCtivati O n fu n Cti O n S https://keras.io/layers/advanced-activations/

You will see these extensively, typically after linear or convolutional layers.
They add nonlinearity to allow the model to express complex nonlinear functions.

. Will see in "
recurrent

neural ReL(U)

1
o(x) = — networks. max(0, x
() l+e Also used in

5 early MLPS and many
and CNNs. e 1 more...

10
Tanh , Leaky RelLU
tanh(x) - 4 fo max(0.1x, x)
j ~ L 10

Sigmoid

-10

10

Serena Yeung BIODS 220: Al in Healthcare

https://keras.io/layers/advanced-activations/

Now: a two-layer fully-connected neural network o) = !
l1+e @

Output: h =o(W'z +b') N

J = W?2h+ b? f
Full function expression: /

g — Wz(O'(Wlx -|- bl)) + b2 -6 -4 -2 no 2 4 6

Sigmoid “activation
function”

Activation functions
introduce non-linearity into

-'wh ’w%z wi3 b% the model -- allowing it to
Wl wl wl wl bl bl reprgsent highly complex
b . 23 2 functions
1 1 1 1 .
w w w b
| 31 32 33 3

A fully-connected neural network (also known
2 [..2 2 2 2 _ [p2 as multi-layer perceptron) is a stack of [affine
W*=|wy, wip w13] b [1] transformation + activation function] layers. There
may not be an activation function in the last layer.

Serena Yeung BIODS 220: Al in Healthcare R1- 59

Now: a two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W' b, W? b’}

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W' b, W? b’}

Loss function (regression loss, same as before):
Per-example: L'(W) = (§* — y*)?

1 1
Over M examples: L = ” z,: L'(W)

W2 = :wfl w%z 'wi?3] b* = [b%]

Serena Yeung BIODS 220: Al in Healthcare

Now: a two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Neural network parameters:

W = {W',b', W?b%}

Loss function (regression loss, same as before):

Per-example: L'(W) = (§* — y*)?

-1 1 1 1
S ot it] IR 1
W™= |wy wyy wyz| b = |b Over Mexamples: L= — > L'W)
1 1 1 bl M &~
W31 Wgzg W33 3 i

Gradient of loss w.r.t. weights:

W2 = 'fw%l w?, w%3] b? = [b2] Function more complex -> now much harder to
- derive the expressions! Instead... computational
graphs and backpropagation.

Serena Yeung BIODS 220: Al in Healthcare R1- 63

Computing gradients with backpropagation

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation
Network output:) = W2(a(W'z + b)) + b*

Think of computing loss function as staged computation of
intermediate variables:

w) W)
Oy Ona Oy Ony (O
() ®

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation
Network output:) = W2(a(W'z + b)) + b*

Think of computing loss function as staged computation of
intermediate variables:

w) W)
Oy Ona Oy Ony (O
() ®

“Forward pass”: z = W'z + b!

h=0(z)
j = W2h + b?
L= (j-y)?

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation
Network output:) = W2(a(W'x + b')) + b*

Think of computing loss function as staged computation of Now, can use a repeated application of the chain

intermediate variables: rule, going backwards through the computational
graph, to obtain the gradient of the loss with
@ @ respect to each node of the computation graph.

Oy Ona Oy Ony (O
() ® @

‘Forward pass”:

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation
Network output:) = W2(a(W'x + b')) + b*

Think of computing loss function as staged computation of Now, can use a repeated application of the chain

intermediate variables: rule, going backwards through the computational
graph, to obtain the gradient of the loss with
@ @ respect to each node of the computation graph.

:_ z 4_’@:>_ ee “Backward pass”: (Zg =2(g —y) (notall gradients

shown)

OL 0L 0y
Q e OW?2 0y OW?2

8_L __ 0L 0y

i ; . . OH 09 0H
orward pass™: z=W'z +b 0L 0L 0H
h = o(z) 8Z ~ 0H 0Z

Q=W2h+b2 oL =8L 0z
) \ oWl 9ZowW!?

L= (§-y)

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation

Network output: § = W2(a(W'z + b')) + b*

Think of computing loss function as staged computation of
intermediate variables:

w) @)
> z*»@} ee
O O

“Forward pass”: z = W'z + b
h=0(z)
g =W?h+ b?
L)2

Plug in from earlier
computations via cha

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

“Backward pass”: oL =2(j —y) (notall gradients
o] shown)

OL OL 07
2 3_?) OW 2

8L— 0L 0

0H = 09 0H

~ 0L OH

- OH 07

OL ™ 0L 0z
oWl 9Z ow?

BIODS 220: Al in Healthcare

Serena Yeung

Computing gradients with backpropagation

Network output: § = W2(a(W'z + b')) + b*

Think of computing loss function as staged computation of
intermediate variables:

w) @)
> z*»@} ee
O O

“Forward pass”: z = W'z + b
h=0(z)
g =W?h+ b?
L)2

Plug in from earlier
computations via cha

Now, can use a repeated application of the chain
rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

“Backward pass”: oL =2(j —y) (notall gradients
o] shown)
OL oL 0y
2 3_?) OW 2
8L— 0L 0
0H ~ 09 0H " |ocal gradients
~ 0L OH /to derive
o2]
OL ™ 0L 0z
oWl 0Z ow?

BIODS 220: Al in Healthcare

Serena Yeung

Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW'. By writing it as
nested applications of the chain rule, only have to derive simple “local” gradients representing
relationships between connected nodes of the graph (e.g. dH / dW).

Serena Yeung BIODS 220: Al in Healthcare

Computing gradients with backpropagation

Key idea: Don’t mathematically derive entire math expression for e.g. dL / dW'. By writing it as
nested applications of the chain rule, only have to derive simple “local” gradients representing
relationships between connected nodes of the graph (e.g. dH / dW).

Can use more or less intermediate variables to
control how difficult local gradients are to derive!

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, using
backpropagation

Serena Yeung

Initialize model parameters to be learned

Wl
w2
bl
b2

np.random.rand(input_dim, hid_dim)
np.random.rand(hid_dim, output dim)
np.random.rand(1l, hid dim)
np.random.rand(l, output dim)

perform gradient descent
step size = le-2

while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr)
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph
d Y curr = 2*(Y _curr - Y) / num examples
d H curr = d_Y curr.dot(W2.T)
d W2 = H curr.T.dot(d_Y curr)
d b2 = d_Y curr
d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))
d X = d Z curr.dot(W1l.T)
= d_X.T.dot(d_Z_curr)
= Y curr

perform gradient update

Wl = W1 - step_size * d_Wl
bl = bl - step size * d_bl
W2 = W2 - step size * d W2
b2 = b2 - step size * d_b2

BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, using
backpropagation

Serena Yeung

Initialize model parameters to be learned

Wl = np.random.rand(input_dim, hid dim)

W2 = np.random.rand(hid_dim, output dim) e 1

bl = np.random.rand(1l, hid dim) Initialize model
b2 = np.random.rand(1l, output dim) parameters

perform gradient descent
step size = le-2

while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr)
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph
d Y curr = 2*(Y _curr - Y) / num examples
d H curr = d_Y curr.dot(W2.T)
d W2 = H curr.T.dot(d_Y curr)
d b2 = d_Y curr
d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))
d X = d Z curr.dot(W1l.T)
= d_X.T.dot(d_Z_curr)
= Y curr

perform gradient update

Wl = W1 - step_size * d_Wl
bl = bl - step size * d_bl
W2 = W2 - step size * d W2
b2 = b2 - step size * d_b2

BIODS 220: Al in Healthcare

Initialize model parameters to be learned

Wl = np.random.rand(input_dim, hid dim)
L. _ W2 = np.random.rand(hid_dim, output dim)
Training purtwo Iaygr neural bl = np.random,rand(1, Bid dim)
network in COde, USII’]g b2 = np.random.rand(1l, output dim)
baCkpropagatlon # perform gradient descent

step size = le-2
while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr) Forward pass
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph
d Y curr = 2*(Y _curr - Y) / num examples
d H curr = d_Y curr.dot(W2.T)
d W2 = H curr.T.dot(d_Y curr)
d b2 = d_Y curr
d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))
d X = d Z curr.dot(W1l.T)
= d_X.T.dot(d_Z_curr)
= Y curr

perform gradient update

Wl = W1 - step_size * d_Wl
bl = bl - step size * d_bl
W2 = W2 - step size * d W2
b2 = b2 - step size * d_b2

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, using
backpropagation

Serena Yeung

Initialize model parameters to be learned

Wl = np.random.rand(input_dim, hid dim)
W2 = np.random.rand(hid_dim, output dim)
bl = np.random.rand(1l, hid dim)

b2 = np.random.rand(1l, output dim)

perform gradient descent
step size = le-2

while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr)
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph

d Y curr = 2*(Y _curr - Y) / num examples

d H curr = d_Y curr.dot(W2.T)

d W2 = H curr.T.dot(d_Y curr)

d b2 = d_Y curr

d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))

d X = d Z curr.dot(W1l.T)
= d_X.T.dot(d_Z_curr)
= Y curr

perform gradient update

Wl = W1 - step_size * d_Wl
bl = bl - step size * d_bl
W2 = W2 - step size * d W2
b2 = b2 - step size * d_b2

BIODS 220: Al in Healthcare

Backward
pass

initialize model parameters to be learned

Wl = np.random.rand(input_dim, hid dim)
L. _ W2 = np.random.rand(hid_dim, output dim)
Training purtwo Iaygr neural bl = np.random,rand(1, Bid dim)
network in code, using b2 = np.random.rand(1, output dim)
baCkpropagatlon # perform gradient descent

step size = le-2
while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr)
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph
d Y curr = 2*(Y _curr - Y) / num examples

d H cur d Y curr.dot(W2.T)

Upstream /d:mﬁf::rm-dot(d_v_curr) T DONIEERIT

gradient d b2 = d_Y curr gradient
d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))
d X = d Z curr.dot(Wl1l.T)

=d i.T.dot(d_z_curr)
= Y curr

perform gradient update

Wl = W1 - step_size * d_Wl
bl = bl - step size * d_bl
W2 = W2 - step size * d W2
b2 = b2 - step size * d_b2

Serena Yeung BIODS 220: Al in Healthcare

Backward
pass

Initialize model parameters to be learned

Wl = np.random.rand(input_dim, hid dim)
L. _ W2 = np.random.rand(hid_dim, output dim)
Training purtwo Iaygr neural bl = np.random,rand(1, Bid dim)
network in COde, USII’]g b2 = np.random.rand(1l, output dim)
baCkpropagatlon # perform gradient descent

step size = le-2
while(keep training)

forward pass, computing loss

Z_curr = X.dot(Wl) + bl
H curr = sigmoid_array(Z_curr)
Y curr = H_curr.dot(W2) + b2

loss = np.sum(np.square(Y curr - Y)) / num_examples

backward pass, computing gradients of loss with respect to each
variable in the computation graph
d Y curr = 2*(Y _curr - Y) / num examples
d H curr = d_Y curr.dot(W2.T)
d W2 = H curr.T.dot(d_Y curr)
d b2 = d_Y curr
d Z curr = d H curr * sigmoid_array(Z_curr)*(l-sigmoid array(Z_curr))
d X = d Z curr.dot(W1l.T)
= d_X.T.dot(d_Z_curr)
= Y curr

perform gradient update

Wl = Wl - step size * d_Wl .
bl = bl - step size * d bl Gradient
W2 = W2 - step size * d_W2 update
b2 = b2 - step size * d_b2

Serena Yeung BIODS 220: Al in Healthcare

Deep learning software frameworks

- Makes our lives easier by providing implementations and higher-level abstractions of many
components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

Serena Yeung BIODS 220: Al in Healthcare

Deep learning software frameworks

- Makes our lives easier by providing implementations and higher-level abstractions of many
components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us
- Supports many common operations with local gradients already implemented
- Can still define custom operations

Computing gradients with backpropagation
Network output:) = W2(o(Wx + b)) + b2

Think of computing loss function as staged computation of Now, can use a repeated application of the chain
intermediate variables: rule, going backwards through the computational
graph, to obtain the gradient of the loss with
respect to each node of the computation graph.

“Backward pass”: 8_€ =2(§—y) (notall gradients
0 shown)
¥ ¥ oL OL 9j
T 9y OW?
Plug in from earlier — 9L + 0L 9j
computations via chai Cpar it
OH 09 0H
u v — W 1
Forward pass™ z= W'z + b 9L~ 0L OH
h=0(z2) ~ OH 0Z
§=W2h+b? op 1L R
R 2 oW~ 9Z oW1
L=(j-v)

Serena Yeung BIODS 220: Al in Healthcare

Deep learning software frameworks

- Makes our lives easier by providing implementations and higher-level abstractions of many
components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us
- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions work
largely in a similar fashion (not necessarily true for earlier versions). We will use Tensorflow
2 in this class.

Serena Yeung BIODS 220: Al in Healthcare

Deep learning software frameworks

- Makes our lives easier by providing implementations and higher-level abstractions of many
components for deep learning, and running them on GPUs:
- Dataset batching, model definition, gradient computation, optimization, etc.

- Automatic differentiation: if we define nodes in a computational graph, will automatically
implement backpropagation for us
- Supports many common operations with local gradients already implemented
- Can still define custom operations

- A number of popular options, e.g. Tensorflow and PyTorch. Recent stable versions work
largely in a similar fashion (not necessarily true for earlier versions). We will use Tensorflow
2 in this class.

- More next Friday, Oct 7, during the Tensorflow review section.

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)

H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors
X tf = tf.convert_to_tensor(X, np.float32)
Y tf = tf.convert to_tensor(Y, np.float32)
Create a TF dataset with specified minibatch size Convert data to TF tensors,

batch_size = 50 create a TF dataset
dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))

dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)
H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))

dataset = dataset.batch(batch_size)

initialize model parameters to be learned Initialize parameters to
Wl = tf.Variable(tf.random.uniform((input_dim, hid dim))) .

W2 = tf.Variable(tf.random.uniform((hid dim, output dim))) be learned as tf.Variable
bl = tf.Variable(tf.random.uniform((1, hid dim))) -> allows them to receive
b2 = tf.Variable(tf.random.uniform((1, output_dim)))

gradient updates during

perform gradient descent timization
epochs = 5000 op atio
optimizer = tf.optimizers.SGD(learning rate=le-2)

losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)
H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000 T L.
optimizer = tf.optimizers.SGD(learning rate=le-2) < Initialize a TF optlmlzer
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)

H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:

X batch, Y batch = batch . .
batch, ¥ batd ake All operations defined

with tf.GradientTape() as tape: <
under the gradient tape
forward pass ill b dt t t
Z_batch = tf.add(tf.matmul(X batch, W1), bl) will be used 1o construc
H batch = tf.math.sigmoid(Z_batch) a Computational graph

Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl) The Computational graph
H batch = tf.math.sigmoid(Z_batch) f

Out_batch = tf.add(tf.matmul (H batch, W2), b2) or our two-layer neural
loss = tf.losses.MSE(Y batch, Out_batch) network

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training our two-layer neural
network in code, in Tensorflow 2.0

Our (X,Y) training set converted to TF tensors

X tf = tf.convert_to_tensor(X, np.float32)

Y tf = tf.convert to_tensor(Y, np.float32)

Create a TF dataset with specified minibatch size
batch_size = 50

dataset = tf.data.Dataset.from tensor_slices((X tf, Y tf))
dataset = dataset.batch(batch_size)

initialize model parameters to be learned

Wl = tf.Variable(tf.random.uniform((input_dim, hid dim)))
W2 = tf.Variable(tf.random.uniform((hid dim, output dim)))
bl = tf.Variable(tf.random.uniform((1, hid dim)))

b2 = tf.Variable(tf.random.uniform((1, output_dim)))

perform gradient descent

epochs = 5000

optimizer = tf.optimizers.SGD(learning rate=le-2)
losses = []

for epoch in range(epochs):
for batch in dataset:
X batch, Y batch = batch
with tf.GradientTape() as tape:

forward pass

Z_batch = tf.add(tf.matmul (X batch, Wl1), bl)

H batch = tf.math.sigmoid(Z_batch)

Out_batch = tf.add(tf.matmul(H batch, W2), b2)

loss = tf.losses.MSE(Y batch, Out_batch) Evaluate gradients using

backward pass and gradient update automatic differentiation

gradients = tape.gradient(loss, [Wl, W2, bl, b2]) and perform gradient
optimizer.apply gradients(zip(gradients, [W1l, W2, bl, b2]))

update

Serena Yeung BIODS 220: Al in Healthcare

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:
for epoch in range(epochs): keras model = tf.keras.models.Sequential([
for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)

H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

Stack of layers

In Tensorflow 2.0: In Keras:
for epoch in range(epochs): keras model = tf.keras.models.Sequential([
for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)

H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

Fully-connected layer

In Tensorflow 2.0: In Keras:
for epoch in range(epochs): keras model = tf.keras.podels.Sequential ([
for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)

H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

Activation function and bias
configurations included!

In Tensorflow 2.0: In Keras: / \
for epoch in range(epochs): keras model = tf.keras.models.Sequential([

for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)

H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2)
loss = tf.losses.MSE(Y batch, Out_batch)

backward pass and gradient update
gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Also high level libraries built on top of Tensorflow, that provide even easier-to-use APIs:

In Tensorflow 2.0: In Keras:
for epoch in range(epochs): keras model = tf.keras.models.Sequential([
for batch in dataset: tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
X batch, Y batch = batch tf.keras.layers.Dense(units=1, use bias=True)
with tf.GradientTape() as tape: 1)
keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),
forward pass loss="'mse')
Z_batch = tf.add(tf.matmul(X_batch, W1), bl) keras_model.fit(dataset, epochs=1000)
H batch = tf.math.sigmoid(Z_batch)
Out_batch = tf.add(tf.matmul(H batch, W2), b2) \

loss = tf.losses.MSE(Y batch, Out_batch)
Specify hyperparameters for

backward pass and gradient date ..
= Hemnieg the training procedure

gradients = tape.gradient(loss, [Wl, W2, bl, b2])
optimizer.apply gradients(zip(gradients, [Wl1l, W2, bl, b2]))

Serena Yeung BIODS 220: Al in Healthcare

Training more complex neural networks is a straightforward extension

keras model = tf.keras.models.Sequential([
tf.keras.layers.Dense(units=3, activation='sigmoid', use_ bias=True),
tf.keras.layers.Dense(units=3, activation='sigmoid', use_ bias=True),
tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True), Now a 6-layer network
tf.keras.layers.Dense(units=3, activation='sigmoid', use_ bias=True),
tf.keras.layers.Dense(units=3, activation='sigmoid', use_bias=True),
tf.keras.layers.Dense(units=1, use_bias=True)

1)

keras_model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=le-2),

loss='mse')
keras model.fit(dataset, epochs=1000)

Serena Yeung BIODS 220: Al in Healthcare

“Deep learning”

Can continue to stack more layers to get deeper models!

= S~ o~

Serena Yeung BIODS 220: Al in Healthcare

“Deep learning”

Can continue to stack more layers to get deeper models!
-~
QKQ% /O
OF—O0—0

l

Input layer

Serena Yeung BIODS 220: Al in Healthcare

“Deep learning”

Can continue to stack more layers to get deeper models!

O O
SIS ™
O O
@KUKO

/ /
Input layer

“Hidden” layers - will see lots of diversity
in size (# neurons), type (linear,
convolutional, etc.), and activation
function (sigmoid, RelLU, etc.)

)OO

Serena Yeung BIODS 220: Al in Healthcare

“Deep learning”

Can continue to stack more layers to get deeper models!

OO0
N 2] ™
O X0 O
P
oo

N o _
utput layer - will differ for
Vol T/ different types of tasks (e.g.
Input layer regression). Should match with
“Hidden” layers - will see lots of diversity loss function.
in size (# neurons), type (linear,

convolutional, etc.), and activation
function (sigmoid, RelLU, etc.)

Serena Yeung BIODS 220: Al in Healthcare

“ . ” Vanilla fully-connected neural
Deep |eamlng networks (MLPs) usually pretty
shallow -- otherwise too many
parameters! ~2-3 layers. Can have
wide range in size of layers (16, 64,
256, 1000, etc.) depending on how

=) much data you have.
=
OO0 O

P
OO0 !

_/ .

Output layer - will differ for

/ T different types of tasks (e.g.
Input layer / regression). Should match with
“Hidden” layers - will see lots of diversity loss function.
in size (# neurons), type (linear,

convolutional, etc.), and activation
function (sigmoid, RelLU, etc.)

Can continue to stack more layers to get deeper models!

Serena Yeung BIODS 220: Al in Healthcare

“ . ” Vanilla fully-connected neural
Deep |eamlng networks (MLPs) usually pretty
shallow -- otherwise too many
| ~2-
Can continue to stack more layers to get deeper models! parameters! ~2-3 layers. Can have

wide range in size of layers (16, 64,
256, 1000, etc.) depending on how

much data you have.
OO O y
hd \ Will see different classes of neural
O networks (e.g. CNNSs) that leverage

structure in data to reduce parameters +
T increase network depth

oA

Ea 2N
OO0

Output layer - will differ for

/ T different types of tasks (e.g.
Input layer / regression). Should match with
“Hidden” layers - will see lots of diversity loss function.
in size (# neurons), type (linear,

convolutional, etc.), and activation
function (sigmoid, RelLU, etc.)

Serena Yeung BIODS 220: Al in Healthcare

What we've seen so far

- Defining a neural network architecture, neural network components
- How to train a neural network
- Loss function
- Gradient descent algorithm
- Computing complex gradients with backpropagation (computational
graphs)
- Implementing and training neural networks in code
- Deep learning frameworks

Serena Yeung BIODS 220: Al in Healthcare

Revisiting fully connected networks vs.
convolutional networks (from lecture)

Serena Yeung BIODS 220: Al in Healthcare

From lecture: fully connected neural network layers

Input values I Output (activation)
=N values
Wx 0
3072 10 x 3072
weights
L [10 x 3072] * [3072 x 1] = [10 x 1] 1

Serena Yeung BIODS 220: Al in Healthcare

From lecture: Simple two-layer fully-connected neural network

®

W2

N

(b

®

Y

Each layer has the same structure
we just saw, but this is a different
example with different dimensions

Input values T

3072 — Wz —_— 10
10 x 3072
weights
[10 x 3072] *[3072 x 1] = [10 x 1] 1

Serena Yeung

BIODS 220: Al in Healthcare

Simple two-layer fully-connected neural network

output: § = W?(c(W'z 4 b)) + b?

Wl
Neural network parameters:
@%@/@ W = {W' b, W2 b*}
(o) PN,

“weights” “biases’

1 1 1 1
Wy Wiy Wig by -
wl wl., wl. wl pl — |l Often refer to all parameters together as just
I a2 a3 I “weights”. Bias is implicitly assumed.
| W31 W3y W33 b3
2 _ [,,,2 2 2 2 __ [pH2
W= lwi; wiy ’w13] b” = [bl]

Serena Yeung BIODS 220: Al in Healthcare

Now: Convolutional layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 107

Convolutional layer

32x32x3 image -> preserve spatial structure

Input now has spatial height and
width dimensions!

32 height
In contrast to fully-connected
layers, want to preserve spatial
structure when processing with a
convolutional layer

3 depth

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 108

Convolutional layer

32x32x3 image

5x5x3 filter (weights)

32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

3

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 109

Convolutional |ayer Filters always extend the full
L depth of the input volume
32x32x3 image /

5x5x3 filter (weights)

32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

3

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 110

Convolutional layer
__— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wliz+b

™~ 1 number:

Slide credit: CS231n

R1- 111

BIODS 220: Al in Healthcare

Serena Yeung

Convolutional layer

Ve

I

32

__— 32x32x3 image

5x5x3 filter
2

——0

convolve (slide) over all
spatial locations

activation map

Slide credit: CS231n

Serena Yeung

BIODS 220: Al in Healthcare

R1- 112

_ consider a second, green filter
Convolutional layer

_— 32x32x3 image activation maps

5x5x3 filter
2
@>® ”

convolve (slide) over all
spatial locations

32 / 28

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 113

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 28

LINN NN

3 6

We stack these up to get a “new image” of size 28x28x6!

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 114

Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32

CONYV,
RelLU
e.g.6
5x5x3
filters

32

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 115

Preview: ConvNet (or CNN) is a sequence of Convolution Layers, interspersed
with activation functions

32 28 24
CONV, CONV, CONV,
RelU RelLU RelLU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 filters 24
3 6 10

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 116

Hierarchical structure of neural networks

Input

Output

2
g
@

2
%
3
9
)

(e.g., presence or

(€9, not or disease)

'/}i\‘
\ed
XS
N
.‘U.

X
22X
nxo
}‘é
VS

O

Hierarchical structure
of neural networks
allows compositional
extraction of
increasingly complex
features

Low-level Mid-level High-level o
Feature visualizations from
features features features Zeiler and Fergus 2013

Serena Yeung BIODS 220: Al in Healthcare R1- 117

Neural network design choices,
tips and tricks

Serena Yeung BIODS 220: Al in Healthcare

Training hyperparameters: control knobs for the art of training neural

networks

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

Optimization methods: SGD, SGD with
momentum, RMSProp, Adam

SGD

SGD+Momentum
RMSProp

Adam

Serena Yeung BIODS 220: Al in Healthcare

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

'y

loss
/ very high leaming rate Q: Which one of these learning
Al rates is best to use?

low learning rate

high learning rate

good learning rate

epoch

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

// very high learning rate Q: Which one of these |eaming
rates is best to use?

low learning rate

A: All of them! Start with large
\\— learning rate and decay over time

good learning rate

epoch

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Learning rate decay

Training Loss

Step: Reduce learning rate at a few fixed
Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.

0 20 40 60 80 100

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Learning rate decay

Training Loss

10 1

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.8 1

0.6 1

Loss

Fancy decay schedules like cosine, linear,

0.4 - .
inverse sqrt.

0.2 -
Empirical rule of thumb: If you increase the

O T T e a0 a Datch size by N, also scale the initial learning
Epoch rate by N.

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Mon |t0r Iea ' | ng curves Also useful to plot performance on

final metric
Loss Curve Accuracy Curve
200 —— Training loss -
—— Validation Loss

07

3 06

o

]
05

<
044
03 - Training Accuracy

—— Validation Accuracy
0 20 P 0 80 100 0 2 20 &0 80 100
Epochs Epochs

Periodically evaluate validation loss

Figure credit: https://www.learnopencv.com/wp-content/uploads/2017/11/cnn-keras-curves-without-aug.jpg

Serena Yeung BIODS 220: Al in Healthcare

Monitor learning curves

0.1v
Training loss can be noisy. Using
a scatter plot or plotting moving 0.08 4
average can help better §
visualize trends. p 0.06 -
=
£ 004 -
]
—
—
0.02 -
0.00

0 100000 200000 300000400000 500000 600000
lteration

Figure credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

—— Training
Validation

Overfitting vs. underfitting

Overfitting

Loss Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Serena Yeung BIODS 220: Al in Healthcare

Overfitting vs. underfitting

Overfitting

—— Training
Validation

Underfitting

Small or no gap between

Loss Training loss much better Loss training and validation loss
than validation \

Serena Yeung

Training loss may May have relatively higher
continue to get better loss overall (model not
while validation learning sufficiently)

plateaus or gets worse

Time

BIODS 220: Al in Healthcare

Overfitting vs. underfitting

Question:

- What are some ways to combat overfitting?
- What are some ways to combat underfitting?

Serena Yeung BIODS 220: Al in Healthcare

—— Training
Validation

Overfitting vs. underfitting

Overfitting

Loss Training loss much better
than validation

Training loss may
continue to get better
while validation
plateaus or gets worse

Time

Model is “overfitting” to the training data. Best
strategy: Increase data or regularize model.
Second strategy: decrease model capacity
(make simpler)

Serena Yeung BIODS 220: Al in Healthcare

—— Training

Validation

Overfitting vs. underfitting

Overfitting Underfitting

A A

Small or no gap between

Loss Training loss much better Loss training and validation loss
than validation \

Training loss may May have relatively higher
continue to get better loss overall (model not
while validation learning sufficiently)

plateaus or gets worse

Time Time
Model is “overfitting” to the training data. Best Model is not able to sufficiently learn to fit the
strategy: Increase data or regularize model. data well. Best strategy: Increase complexity
Second strategy: decrease model capacity (e.g. size) of the model. Second strategy: make
(make simpler) problem simpler (easier task, cleaner data)

Serena Yeung BIODS 220: Al in Healthcare R1- 130

Overfitting vs. underfitting: more intuition

Overfitting

Underfitting

. .
.
-
-
o °* .
° -
.
- a
-
. .
. 'S
. B
. B
. . -
.
- . .
° o

Figure credit: https://gph.fs.quoracdn.net/main-gimg-412c8556aacf7e25b86bba63e9e67ac6-c

Serena Yeung

BIODS 220: Al in Healthcare

https://qph.fs.quoracdn.net/main-qimg-412c8556aacf7e25b86bba63e9e67ac6-c

Healthy learning curves

Loss

Steep improvement at
beginning

Time Continue to gradually improve

Serena Yeung BIODS 220: Al in Healthcare

Healthy learning curves

In practice, models with best final
" metric (e.g. accuracy) often have
Loss slight overfitting.
Intuition: slightly push complexity of
model to the highest that the data can
handle

Steep improvement at
beginning

Time Continue to gradually improve

Serena Yeung BIODS 220: Al in Healthcare

= Training
Validation

More debugging

Loss

Time

Serena Yeung BIODS 220: Al in Healthcare

= Training
Validation

More debugging

N Plateau may be bad
Loss weight initialization

<=

>

Time

Serena Yeung BIODS 220: Al in Healthcare

—— Training
Validation

More debugging

" Plateau may be bad "
Loss weight initialization Loss \
Time Time

Serena Yeung BIODS 220: Al in Healthcare

More debugging

Loss

Plateau may be bad
weight initialization

Serena Yeung

Time

Loss

Loss decreasing but
slowly -> try higher
learning rate

\

Time

BIODS 220: Al in Healthcare

= Training
Validation

More debugging

Loss

Plateau may be bad
weight initialization

Serena Yeung

Time

Loss

Loss decreasing but
slowly -> try higher
learning rate

\

Time

BIODS 220: Al in Healthcare

Loss

A

= Training
Validation

Time

More debugging

Loss

Plateau may be bad
weight initialization

Time

Loss

Loss decreasing but
slowly -> try higher
learning rate

\

Time

BIODS 220: Al in Healthcare

Loss

A

= Training
Validation

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

\

Time

Serena Yeung

- Training

More debugging Validaton
Loss decreasing but Healthy loss curve
R Plateau may be bad R slowly -> try higher R plateaus -> try further
Loss / weight initialization Loss learning rate Loss learning rate decay at

\ plateau point

\

Time Time Time

Loss

Time

Serena Yeung BIODS 220: Al in Healthcare

More debugging

Plateau may be bad

Loss weight initialization
Time
If you further decay learning
Loss 1 rate too early, may look like

{ longer

this -> inefficient learning vs.
keeping higher learning rate

Loss

Loss decreasing but
slowly -> try higher
learning rate

\

Time

BIODS 220: Al in Healthcare

Loss

A

= Training
Validation

Healthy loss curve
plateaus -> try further
learning rate decay at
plateau point

\

Time

Serena Yeung

= Training

More debugging Validaton
Loss decreasing but Healthy loss curve
R Plateau may be bad R slowly -> try higher R plateaus -> try further
Loss / weight initialization Loss learning rate Loss learning rate decay at

\ plateau point

\

> > >

Time Time Time

If you further decay learning
rate too early, may look like

A

Loss) R) Accuracy Final metric is still
this -> inefficient learning vs. improving -> keep
keeping higher learning rate training!

{ longer '
Time Time

Serena Yeung BIODS 220: Al in Healthcare

—— Training
Validation

Early stopping: always do this

Loss Accuracy

|

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot
that worked best on val.

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 143

Design choices: network architectures

Major design choices:
- Architecture type

- For MLPs, # neurons in
each layer (hidden layer

G size)
- For CNNs, # filters, filter

size, filter stride in each
layer

- Look at argument options
in Tensorflow when
defining network layers

) (ResNet, DenseNet, etc.
MUMQ\ for CNNs)

N - Depth (# layers)

vy

N

Serena Yeung BIODS 220: Al in Healthcare

Design choices: network architectures

O

O

L
X

()
]
)
]

O
>~
/O

O

/

7
=

If trying to make network bigger (when underfitting) or

smaller (when overfitting), network depth and hidden layer
size best to adjust first. Don’t waste too much time early on
fiddling with choices that only minorly change architecture.

Serena Yeung

BIODS 220: Al in Healthcare

Major design choices:

Architecture type
(ResNet, DenseNet, etc.
for CNNs)

Depth (# layers)

For MLPs, # neurons in
each layer (hidden layer
size)

For CNNs, # filters, filter
size, filter stride in each
layer

Look at argument options
in Tensorflow when
defining network layers

Design choices: regularization (loss term)

Remember optimizing loss functions, which express how well model fit training data, e.qg.:

1 A7 7
Lregression — M Z(y —Y)2

()

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (loss term)

Remember optimizing loss functions, which express how well model fit training data, e.qg.:

1 A7 2
Lreg'ression — M Z(y —Y)2

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too

well to the training data). Used to combat overfitting:
importance of reg. term

. . 4
L=~ Z(f g+ ROY)

Data loss Regularization
loss

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (loss term)

Remember optimizing loss functions, which express how well model fit training data, e.qg.:

1 A7 2
Lreg'ression — M Z(y —Y)2

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:
importance of reg. term

. . 4
L=~ Z(f g+ AROY)

. Examples
Data loss Reqgularization
9 loss L2 regularization: R(W) =33, W2, (weight decay)

L1 regularization: R(W) =>",.>",|Wk,
Elastic net (L1 + L2): R(W) =Y, 32, BW2, + [Wyl

https://www.tensorflow.org/api_docs/python/tf/keras/reqularizers

Serena Yeung BIODS 220: Al in Healthcare R1- 148

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

Design choices: regularization (loss term)

Remember optimizing loss functions, which express how well model fit training data, e.qg.:

1 A7 2
Lregression — M Z(y —Y)2

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

importance of reg. term L2 most popular: low loss when all weights are relatively

small. More strongly penalizes large weights vs L1.

1 A7 1\2 ¢ Expresses preference for simple models (need large
L= MZ(?J —y')"+ AR(W)
" A

* coefficients to fit a function to extreme outlier values).

. Examples
Data loss Reqgularization
9 loss L2 regularization: R(W) =33, W2, (weight decay)

L1 regularization: R(W) =>",.>",|Wk,
Elastic net (L1 + L2): R(W) =Y, 32, BW2, + [Wyl

https://www.tensorflow.org/api_docs/python/tf/keras/reqularizers

Serena Yeung BIODS 220: Al in Healthcare R1- 149

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

Design choices: regularization (loss term)

Remember optimizing loss functions, which express how well model fit training data, e.qg.:

1 A7 2
Lreg'ression — M Z(y —Y)2

Regularization adds a term to this, to express preferences on the weights (that prevent it from fitting too
well to the training data). Used to combat overfitting:

importance of reg. term L2 most popular: low loss when all weights are relatively

small. More strongly penalizes large weights vs L1.

1 A7 1\2 ¢ Expresses preference for simple models (need large
L= MZ(?J —y')"+ AR(W)
" A

* coefficients to fit a function to extreme outlier values).

Data loss Regularization M _ 9 .
loss L2 regularization: R(W) =>",>>,W,, (weight decay)
Next: implicit regularizers that do not add an explicit L1 regularization: R(W) =32, > [Why
term; instead do something implicit in network to Elastic net (L1 +L2): R(W)=>_, ZlﬂW,f,l + |Wh,|
prevent it from fitting too well to training data https://www.tensorflow.org/api_docs/python/tf/keras/reqularizers

Serena Yeung BIODS 220: Al in Healthcare R1- 150

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers

Design choices: regularization (dropout)

First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (dropout)

First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

Probability of “dropping out” each neuron
at a forward pass is hyperparameter p.
0.5 and 0.9 are common (high!).

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (dropout)

First example of an implicit regularizer.
During training, at each iteration of forward pass randomly set some neurons to zero
(i.e., change network architecture such that paths to some neurons are removed).

Probability of “dropping out” each neuron
at a forward pass is hyperparameter p.
0.5 and 0.9 are common (high!).

Intuition: dropout is equivalent to training
a large ensemble of different models that
share parameters.

During testing, all neurons are active. But scale neuron outputs by dropout probability p,
such that expected output during training and testing match.

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014. Figure credit: CS231n.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (batch normalization)

Another example of an implicit regularizer.
Insert BN layers after FC or conv layers, before activation function.

During training, at each iteration of forward pass normalize neuron activations by mean and variance of
minibatch. Also learn scale and shift parameter to get final output.

1 N
Hi =N Z Li,j
i=1
N
1
2 2
g; = N (xz',j ,U,])
1=1
2 x’b,j /'LJ
Li,j =
0]2 & During testing, normalize by a fixed mean and variance computed
from the entire training set. Use learned scale and shift
iy = Yollsg = 25 parameters.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: regularization (batch normalization)

Another example of an implicit regularizer.

Insert BN layers after FC or conv layers, before activation function.

During training, at each iteration of forward pass normalize neuron activations by mean and variance of
minibatch. Also learn scale and shift parameter to get final output.

1 N
Hj = N Z Li,j
i=1 Intuition: batch normalization allows keeping the weights in
N a healthy range. Also some randomness at training due to
ol i (2; ; — _)2 different effect from each minibatch sampling ->
J N i, — Hj regularization!
i=1
5 T '
By = —ud Ky
0]2 8 During testing, normalize by a fixed mean and variance computed
from the entire training set. Use learned scale and shift
Yig = Yolig + Bs parameters.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: data augmentation

Augment effective training data size by simulating more diversity from
existing data. Random combinations of:

- Translation and scaling

- Distortion

- Image color adjustment

- Etc.

Serena Yeung BIODS 220: Al in Healthcare

Design choices: data augmentation

Augment effective training data size by simulating more diversity from
existing data. Random combinations of:

- Translation and scaling

- Distortion

- Image color adjustment

- Etc.

Think about the domain of
your data: what makes
sense as realistic
augmentation operations?

Serena Yeung BIODS 220: Al in Healthcare

Design choices: weight initialization

Default initializer for most Keras layers is uniform distribution with a Xavier / Glorot
normalization

@interfaces. legacy_dense_support
def __init_ (self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
++kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape']l = (kwargs.pop('input_dim'),)
super(Dense, self).__init_ (#xkwargs)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Serena Yeung BIODS 220: Al in Healthcare

Hyperparameter search

Step 1: Find LR that makes loss go down

Step 2: Define coarse grid of hyperparameter options, train for ~1-5 epochs
Step 3: Refine grid, train longer

Step 4: Look at loss curves

Step 5: GOTO step 3

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Useful debugging / sanity check:

Hype rpa rameter sea rCh restrict to a very small dataset first
(e.g. 1 or 2 minibatches). You should
/ be able to severely overfit and drive
] the loss to 0.

Step 1: Find LR that makes loss go down

Step 2: Define coarse grid of hyperparameter options, train for ~1-5 epochs

Step 3: Refine grid, train longer

Step 4: Look at loss curves

Step 5: GOTO step 3

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Useful debugging / sanity check:

Hype rpa rameter sea rCh restrict to a very small dataset first
(e.g. 1 or 2 minibatches). You should
/ be able to severely overfit and drive
the loss to 0.

Step 1: Find LR that makes loss go down

Step 2: Define coarse grid of hyperparameter options, train for ~1-5 epochs
Step 3: Refine grid, train longer

Step 4: Look at loss curves

Step 5: GOTO step 3

Common pitfall: making grid too
small. Sample a wide range of
values to make sure you’ve explored
the space. (e.g. LRs from 1e0 to
1e-5.)

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Useful debugging / sanity check:

Hype rpa rameter sea rCh restrict to a very small dataset first
(e.g. 1 or 2 minibatches). You should
/ be able to severely overfit and drive
the loss to 0.

Step 1: Find LR that makes loss go down

Step 2: Define coarse grid of hyperparameter options, train for ~1-5 epochs
Step 3: Refine grid, train longer

Step 4: Look at loss curves

Step 5: GOTO step 3

Common pitfall: making grid too
small. Sample a wide range of
values to make sure you’ve explored
the space. (e.g. LRs from 1e0 to
1e-5.)

Aside: For LR, should sample e”x
for x in Uniform [-5, O]!

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare

Random Search for

Ra N d om sea rCh VS. g ri d Sed rCh Hyper-Parameter Optimization
Bergstra and Bengio, 2012

Grid Layout Random Layout

o
°
o
Unimportant Parameter
°
Unimportant Parameter

Important Parameter Important Parameter

lllustration of Bergstra et al., 2012 by Shayne
. . Longpre, copyright CS231n 2017
Slide credit: CS231n apre copyria

Serena Yeung BIODS 220: Al in Healthcare

Model inference

Serena Yeung BIODS 220: Al in Healthcare

Maximizing test-time performance: apply data augmentation
operations

Main idea: apply model on multiple variants of a data example, and then take
average or max of scores

Can use data augmentation operations we saw during training! E.g.:

- Evaluate at different translations and scales
- Common approach for images: evaluate image crops at 4 corners and center,

+ horizontally flipped versions -> average 10 scores

Serena Yeung BIODS 220: Al in Healthcare

Model ensembles

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 166

Model ensembles: tips and tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

051 Single Model
04 Standard LR Schedule m

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017))
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. Slide credit: CS231n

Serena Yeung BIODS 220: Al in Healthcare R1- 167

Model ensembles: tips and tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

055 Single Model
04 Standard LR Schedule

i

05+

0.4

Snapshot Ensemble
Cyclic LR Schedule

AN

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

BIODS 220: Al in Healthcare

Training loss

Cifar10 (L=100,k=24, B=300 epochs)

10!
- Standard Ir scheduling
—— Cosine annealing with restart Ir 0.1
10° | | | | |
| | | | |
107!
102
. |
10°
| |
Model | Model | Model | Model | Model | Model
1 2 3 4 5 6
104 | | | | |
0 50 100 150 200 250 300
Epochs

Cyclic learning rate schedules can
make this work even better!
Slide credit: CS231n

R1- 168

Serena Yeung

Summary

- Overview of deep learning fundamentals and training neural networks

- Next Friday’s section will provide an in-depth tutorial on Tensorflow

Serena Yeung BIODS 220: Al in Healthcare

